ITR: Estimation, Approximation and Computation in Learning Theory
ITR:学习理论中的估计、近似和计算
基本信息
- 批准号:0312113
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-09-01 至 2004-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ITR: Estimation, Approximation and Computation in Learning Theory Learning theory, a rapidly growing area of multidisciplinary research has recently attracted much attention from the mathematical community. There are now numerous pressing issues coming from the statistical, engineering and computer science communities resulting from their significant progress in learning theory that provide a unique opportunity and vast need for mathematicians to develop both theoretical concepts and computational tools to assist in this area of research. We propose to study several fundamental theoretical mathematical and computational problems crucial for the continued rapid development of learning theory. They include a further study and improvements of the F. Cucker and S. Smale theory of learning, the support vector machine (SVM) of V. Vapnik, the regression theory of T. Poggio, the deterministic approach of C. A. Micchelli for optimal estimation under uncertainty and the relationship between these important ideas. Among other things, we will be concerned with learning a function from other than function values, learning vector valued functions, learning the optimal information for learning a function and estimating the approximation error using notions of nonlinear widths of function classes which is useful for obtaining deterministic estimates that lead to statistical estimates for learning. We shall study efficient numerical solutions of second kind integral equations in high dimensions which come up in the study of the approximation error of Cucker and Smale. We will also focus upon the minimal norm interpolation approach to regression and SVM which is not emphasized much in the learning theory literature and use duality theory as a bridge to compare all of them. We shall also study the kernel density problem whose importance in learning theory has been recently described by T. Poggio, investigate how to choose a kernel from the data and consider probability density estimation problems which are useful in pattern recognition and speech recognition. We are also interested in the question of stability of learning algorithms and seek to construct kernels on complex spaces suitable for applications.Our proposed research addresses a multitude of practical problems arising from the handling of massive amounts of data in high dimensional spaces. Therefore, in a time of heightened concern for national security against terrorism, this research will provide a new tool for dealing with the technological challenges that have recently emerged and an opportunity for applied mathematicians to assist in their solution.
ITR:学习理论中的估计、近似和计算学习理论是一个快速发展的多学科研究领域,最近引起了数学界的广泛关注。由于统计、工程和计算机科学界在学习理论方面取得的重大进展,现在出现了许多紧迫的问题,这为数学家开发理论概念和计算工具来协助这一研究领域提供了独特的机会和巨大的需求。我们建议研究对学习理论的持续快速发展至关重要的几个基本理论数学和计算问题。其中包括对F. Cucker和S. Smale学习理论、V. Vapnik的支持向量机(SVM)、T. Poggio的回归理论、C. A. Micchelli的最优估计的确定性方法的进一步研究和改进。不确定性以及这些重要想法之间的关系。除其他事项外,我们将关注从函数值以外的函数学习函数、学习向量值函数、学习学习函数的最佳信息以及使用函数类非线性宽度的概念估计逼近误差,这对于获得确定性很有用导致学习统计估计的估计。我们将研究在Cucker和Smale的逼近误差研究中提出的高维第二类积分方程的有效数值解。我们还将重点关注回归和支持向量机的最小范数插值方法,这在学习理论文献中并没有得到太多强调,并使用对偶理论作为比较所有这些方法的桥梁。我们还将研究 T. Poggio 最近描述的在学习理论中的重要性的核密度问题,研究如何从数据中选择核,并考虑在模式识别和语音识别中有用的概率密度估计问题。我们还对学习算法的稳定性问题感兴趣,并寻求在适合应用的复杂空间上构建内核。我们提出的研究解决了在高维空间中处理大量数据所产生的众多实际问题。因此,在国家安全反恐日益受到关注的时代,这项研究将为应对最近出现的技术挑战提供新的工具,并为应用数学家提供协助解决这些挑战的机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuesheng Xu其他文献
Fixed-point proximity algorithms solving an incomplete Fourier transform model for seismic wavefield modeling
定点邻近算法求解地震波场建模的不完全傅立叶变换模型
- DOI:
10.1016/j.cam.2020.113208 - 发表时间:
2021-03 - 期刊:
- 影响因子:0
- 作者:
Yuesheng Xu;Lixin Shen;Tingting Wu - 通讯作者:
Tingting Wu
A deblurring/denoising corrected scintigraphic planar image reconstruction model for targeted alpha therapy
用于靶向α治疗的去模糊/去噪校正闪烁扫描平面图像重建模型
- DOI:
10.1117/12.2584736 - 发表时间:
2021-02 - 期刊:
- 影响因子:0
- 作者:
Lisa Bodei;Ida Häggström;Matthew K. Maroun;Andrzej Krol;Yuesheng Xu;Joseph O'Donoghue;Howard Gifford;Charles Ross Schmidtlein - 通讯作者:
Charles Ross Schmidtlein
Constrained best approximation in Hilbert space III. Applications ton-convex functions
希尔伯特空间 III 中的约束最佳近似。
- DOI:
10.1007/bf02433049 - 发表时间:
1996 - 期刊:
- 影响因子:2.7
- 作者:
F. Deutsch;V. Ubhaya;J. Ward;Yuesheng Xu - 通讯作者:
Yuesheng Xu
On computing with the Hilbert spline transform
关于希尔伯特样条变换的计算
- DOI:
10.1007/s10444-011-9252-x - 发表时间:
2013-04 - 期刊:
- 影响因子:1.7
- 作者:
C. A. Micchelli;Yuesheng Xu;Bo Yu - 通讯作者:
Bo Yu
Multiplicative Noise Removal: Nonlocal Low-Rank Model and Its Proximal Alternating Reweighted Minimization Algorithm
乘性噪声消除:非局部低秩模型及其近端交替重加权最小化算法
- DOI:
10.1137/20m1313167 - 发表时间:
2020-01 - 期刊:
- 影响因子:0
- 作者:
Xiaoxia Liu;Yuesheng Xu;Jian Lu;Lixin Shen;Chen Xu - 通讯作者:
Chen Xu
Yuesheng Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuesheng Xu', 18)}}的其他基金
Collaborative Research: Sparse Optimization for Machine Learning and Image/Signal Processing
协作研究:机器学习和图像/信号处理的稀疏优化
- 批准号:
2208386 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: Sparse Optimization in Large Scale Data Processing: A Multiscale Proximity Approach
协作研究:大规模数据处理中的稀疏优化:多尺度邻近方法
- 批准号:
1912958 - 财政年份:2019
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
International Conference on Mathematics of Data Science
国际数据科学数学会议
- 批准号:
1839457 - 财政年份:2018
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: An Efficient Programming Model for HPC Applications on Next-Generation High-end Parallel Machines
协作研究:下一代高端并行机上 HPC 应用的高效编程模型
- 批准号:
0833152 - 财政年份:2008
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Multiscale Total Variation Methods for Integral Equation Models in Image Processing
图像处理中积分方程模型的多尺度全变分法
- 批准号:
0712827 - 财政年份:2007
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
ITR: Estimation, Approximation and Computation in Learning Theory
ITR:学习理论中的估计、近似和计算
- 批准号:
0407476 - 财政年份:2003
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Adaptive Wavelet Methods for Boundary Integral Equations
边界积分方程的自适应小波方法
- 批准号:
0296024 - 财政年份:2001
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Adaptive Wavelet Methods for Boundary Integral Equations
边界积分方程的自适应小波方法
- 批准号:
9973427 - 财政年份:1999
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
U.S.-China Cooperative Research: Symposium on Computational Mathematics, Guangzhou, China, August 1997
美中合作研究:计算数学研讨会,中国广州,1997 年 8 月
- 批准号:
9604916 - 财政年份:1997
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Construction of Wavelets on Finite Domans and Applications to Boundary Integral Equations
数学科学:有限域上的小波构造及其在边界积分方程中的应用
- 批准号:
9504780 - 财政年份:1995
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
相似国自然基金
多种深度学习协同的北极海冰表面积雪深度遥感反演及其未来预估研究
- 批准号:42306201
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
碎石粒料颗粒接触状态与破碎模式交互作用下弹塑性变形机理及预估模型
- 批准号:52308465
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
“双碳”目标下中国北方旱区干湿变化的约束预估
- 批准号:42305030
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
全球变暖背景下潜热释放加热对北半球阻塞的影响及未来预估
- 批准号:42375021
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向超大规模集成电路功耗的设计早期预估与片上实时监测技术
- 批准号:62304192
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Statistical mechanical approach to matrix and tensor estimation
矩阵和张量估计的统计机械方法
- 批准号:
22KJ1074 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Dietary Intake Estimation by Using Colored Point Cloud Processing
使用彩色点云处理估计膳食摄入量
- 批准号:
20K20267 - 财政年份:2020
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A study on radio wave propagation estimation and its visualization in a large metropolitan area
大都市区无线电波传播估计及其可视化研究
- 批准号:
19K04398 - 财政年份:2019
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development and Estimation of Mathematical Modeling for Ballast Simulations and Earthquake Resistant Ballast Ground Mixed with the Stabilized Structure
道碴模拟及与稳定结构混合的抗震道碴地基数学模型的开发与评估
- 批准号:
16K13734 - 财政年份:2016
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
A study on radio wave propagation estimation and its visualization using spatial location information
利用空间位置信息的无线电波传播估计及其可视化研究
- 批准号:
15K06083 - 财政年份:2015
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)