FRG: Collaborative Research: Combinatorial representation theory, multiple Dirichlet series, and moments of L-functions
FRG:协作研究:组合表示理论、多重狄利克雷级数和 L 函数矩
基本信息
- 批准号:0652529
- 负责人:
- 金额:$ 9.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Great progress has been made in recent years in the theory of multiple Dirichlet series. A variety of previously studied examples have been organized into a coherent framework. The emergent structures serve to both suggest natural generalizations---often with applications to analytic number theory---and point towards unexpected connections with such diverse areas of mathematics as the spectral theory of automorphic forms, arithmetic of function fields, the geometry of affine root systems and combinatorial representation theory. Many applications in analytic number theory have been found and many more are expected. These include moment estimates and convexity breaking for L-functions over an arbitrary number field, nonvanishing results for L-functions over number fields and function fields and results on the nature of the mysterious Whittaker coefficients of metaplectic Eisenstein series and higher order theta functions. Moreover, during the past several years the combined efforts of the investigators have demonstrated that Weyl group multiple Dirichlet series have a beautiful structure that was previously unknown, and by elucidating this structure, new connections with other areas of mathematics are rapidly emerging. The grant will fund continued investigation of these rapidly developing areas. In addition, two workshops are planned for the dissemination of these results and new techniques to research mathematicians and graduate students.Number theory began thousands of years ago and was initially inspired by questions about prime numbers. Dirichlet series are infinite series, such as the Riemann zeta function, and are a primary tool in the study of prime numbers. More recently they have come to fore by providing interconnections between many diverse areas of pure mathematics and physics. Multiple Dirichlet series are simply Dirichlet series in several variables -- they have the merit that the number theoretic quantities they measure can themselves be Dirichlet series, in particular L-functions, which are fundamental objects that can be associated with many classes of number-theoretic data, such as elliptic curves, representations of Galois groups, or modular forms.
近年来多重狄利克雷级数理论取得了很大进展。先前研究的各种示例已被组织成一个连贯的框架。这些新出现的结构既表明了自然的概括——通常应用于解析数论——也指出了与自守形式的谱理论、函数域算术、仿射几何等不同数学领域的意想不到的联系。根系统和组合表示理论。解析数论中的许多应用已经被发现,并且预计还会有更多应用。其中包括任意数域上 L 函数的矩估计和凸性破缺、数域和函数域上 L 函数的非零结果,以及有关超波爱森斯坦级数和高阶 theta 函数的神秘 Whittaker 系数性质的结果。此外,在过去几年中,研究人员的共同努力证明,Weyl群多重狄利克雷级数具有以前未知的美丽结构,并且通过阐明这种结构,与其他数学领域的新联系正在迅速出现。这笔赠款将资助对这些快速发展领域的持续调查。此外,还计划举办两个研讨会,向研究数学家和研究生传播这些成果和新技术。数论始于数千年前,最初受到素数问题的启发。狄利克雷级数是无限级数,例如黎曼 zeta 函数,是研究素数的主要工具。最近,它们通过提供纯数学和物理的许多不同领域之间的互连而脱颖而出。 多重狄利克雷级数只是多个变量的狄利克雷级数 - 它们的优点是它们测量的数论量本身可以是狄利克雷级数,特别是 L 函数,它们是可以与许多类数论相关联的基本对象数据,例如椭圆曲线、伽罗瓦群的表示或模形式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Brubaker其他文献
Benjamin Brubaker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Brubaker', 18)}}的其他基金
Representations of p-adic Covering Groups and Integrable Systems
p-adic 覆盖群和可积系统的表示
- 批准号:
2101392 - 财政年份:2021
- 资助金额:
$ 9.84万 - 项目类别:
Standard Grant
Matrix Coefficients of Covering Groups, Quantum Groups, and Lie Superalgebras
覆盖群、量子群和李超代数的矩阵系数
- 批准号:
1801527 - 财政年份:2018
- 资助金额:
$ 9.84万 - 项目类别:
Continuing Grant
Metaplectic automorphic forms and matrix coefficients
Metaplectic 自守形式和矩阵系数
- 批准号:
1406238 - 财政年份:2014
- 资助金额:
$ 9.84万 - 项目类别:
Continuing Grant
CAREER: Multiple Dirichlet Series, Automorphic Forms, and Combinatorial Representation Theory
职业:多重狄利克雷级数、自同构形式和组合表示理论
- 批准号:
1258675 - 财政年份:2012
- 资助金额:
$ 9.84万 - 项目类别:
Continuing Grant
Automorphic Forms, Representations, and Combinatorics
自守形式、表示和组合
- 批准号:
1205558 - 财政年份:2012
- 资助金额:
$ 9.84万 - 项目类别:
Standard Grant
CAREER: Multiple Dirichlet Series, Automorphic Forms, and Combinatorial Representation Theory
职业:多重狄利克雷级数、自同构形式和组合表示理论
- 批准号:
0844185 - 财政年份:2009
- 资助金额:
$ 9.84万 - 项目类别:
Continuing Grant
Applications of the relative trace formula in higher rank
相对迹公式在高阶中的应用
- 批准号:
0758197 - 财政年份:2008
- 资助金额:
$ 9.84万 - 项目类别:
Standard Grant
Multiple Dirichlet Series with Applications to Automorphic Representation Theory
多重狄利克雷级数及其在自守表示理论中的应用
- 批准号:
0702438 - 财政年份:2007
- 资助金额:
$ 9.84万 - 项目类别:
Standard Grant
相似国自然基金
基于交易双方异质性的工程项目组织间协作动态耦合研究
- 批准号:72301024
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
面向协作感知车联网的信息分发时效性保证关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自主性边界的人机协作-对抗混合智能控制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 9.84万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 9.84万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 9.84万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 9.84万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245228 - 财政年份:2023
- 资助金额:
$ 9.84万 - 项目类别:
Standard Grant