Multiple Dirichlet Series with Applications to Automorphic Representation Theory
多重狄利克雷级数及其在自守表示理论中的应用
基本信息
- 批准号:0702438
- 负责人:
- 金额:$ 17.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project, Principal Investigator Brubaker and his collaborators seek to understand metaplectic forms, a generalization of automorphic forms to certain covers of split, reductive algebraic groups. Specifically, the proposed research focuses on constructing Dirichlet series in several complex variables, termed ``Multiple Dirichlet Series'' (MDS), with good analytic properties (e.g. functional equations and meromorphic continuation) and connecting these series to the Fourier-Whittaker coefficients of Eisenstein series on metaplectic groups. Since the construction of the metaplectic cover is intimately tied to reciprocity laws in number fields, the Dirichlet series and its polar residues contain families of automorphic forms twisted by characters built from power residue symbols. Analytic properties of the Dirichlet series then translate to arithmetic applications for automorphic forms, including non-vanishing results for automorphic L-functions. The construction and subsequent proof of analytic properties of these MDS uses new techniques in combinatorial representation theory, and another primary objective of this work is a deeper understanding of the connections between this representation theory and metaplectic forms. In the process, this structure is expected to illuminate further the relationship between combinatorial representation theory and the special case of Fourier-Whittaker coefficients of automorphic forms.Historically, problems in number theory have centered around integer solutions to polynomial equations, so called ``Diophantine equations,'' which could be simply stated, but often extraordinarily hard to prove. It once appeared that these questions were the stuff of pure thought experiments, since the integers are discrete and should therefore have no bearing on the world and its continuous phenomena. But in the late 1960's, Robert Langlands developed a series of far-reaching conjectures known today as the Langlands' Program to investigate connections among number theory, arithmetic geometry and harmonic analysis; in fact, his conjectures were based on calculations involving a special case of the highly symmetric functions known as Eisenstein series, which are the principal objects of study in this proposal. The reach of Langlands' conjectures has been greatly expanded in the last several decades and now extends from methods for solving Diophantine equations to geometric versions with intimate connections to quantum field theory and string theory, which attempt to explain the origins and expansion of our universe via a uniform treatment of fundamental forces including gravity and electromagnetism. That is, motivated by natural questions about solutions of polynomial equations in the integers, one obtains a new interpretation for profoundly important physical phenomena; in trying to answer discrete problems, one finds explanations of the continuous world. This project attempts to bring together a previously disparate community of researchers and students in number theory, automorphic forms, Lie groups, and combinatorics to further investigate analogous connections by studying large classes of more general Eisenstein series and their relations to the aforementioned disciplines.
在这个项目中,首席研究员 Brubaker 和他的合作者试图理解元逻辑形式,即自同构形式对分裂、还原代数群的某些覆盖的概括。 具体来说,所提出的研究重点是在多个复变量中构造狄利克雷级数,称为“多重狄利克雷级数”(MDS),具有良好的分析性质(例如函数方程和亚纯延拓),并将这些级数连接到爱森斯坦关于超群群的系列。由于超触覆盖的构造与数域中的互反律密切相关,狄利克雷级数及其极性留数包含由幂留数符号构建的字符扭曲的自守形式族。然后,狄利克雷级数的解析性质转化为自同构形式的算术应用,包括自同构 L 函数的非零结果。这些 MDS 的分析属性的构造和随后的证明使用了组合表示理论中的新技术,这项工作的另一个主要目标是更深入地理解这种表示理论和元逻辑形式之间的联系。在此过程中,这种结构有望进一步阐明组合表示论与自守形式的傅立叶-惠特克系数的特殊情况之间的关系。历史上,数论中的问题都集中在多项式方程的整数解上,即所谓的“丢番图”方程”可以简单地表述,但通常很难证明。曾经看来,这些问题是纯粹思想实验的内容,因为整数是离散的,因此应该与世界及其连续现象无关。但在 1960 年代末,罗伯特·朗兰兹提出了一系列影响深远的猜想,即今天的朗兰兹纲领,以研究数论、算术几何和调和分析之间的联系;事实上,他的猜想是基于涉及称为爱森斯坦级数的高度对称函数的特殊情况的计算,这是该提案中的主要研究对象。朗兰兹猜想的范围在过去几十年里得到了极大的扩展,现在从解决丢番图方程的方法扩展到与量子场论和弦理论密切相关的几何版本,这些猜想试图通过以下方式解释我们宇宙的起源和膨胀:对包括重力和电磁力在内的基本力的统一处理。也就是说,在整数多项式方程解的自然问题的推动下,人们获得了对极其重要的物理现象的新解释;在试图回答离散问题的过程中,人们找到了对连续世界的解释。该项目试图将数论、自同构形式、李群和组合学方面以前不同的研究人员和学生聚集在一起,通过研究更一般的爱森斯坦级数及其与上述学科的关系来进一步研究类似的联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Brubaker其他文献
Benjamin Brubaker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Brubaker', 18)}}的其他基金
Representations of p-adic Covering Groups and Integrable Systems
p-adic 覆盖群和可积系统的表示
- 批准号:
2101392 - 财政年份:2021
- 资助金额:
$ 17.04万 - 项目类别:
Standard Grant
Matrix Coefficients of Covering Groups, Quantum Groups, and Lie Superalgebras
覆盖群、量子群和李超代数的矩阵系数
- 批准号:
1801527 - 财政年份:2018
- 资助金额:
$ 17.04万 - 项目类别:
Continuing Grant
Metaplectic automorphic forms and matrix coefficients
Metaplectic 自守形式和矩阵系数
- 批准号:
1406238 - 财政年份:2014
- 资助金额:
$ 17.04万 - 项目类别:
Continuing Grant
CAREER: Multiple Dirichlet Series, Automorphic Forms, and Combinatorial Representation Theory
职业:多重狄利克雷级数、自同构形式和组合表示理论
- 批准号:
1258675 - 财政年份:2012
- 资助金额:
$ 17.04万 - 项目类别:
Continuing Grant
Automorphic Forms, Representations, and Combinatorics
自守形式、表示和组合
- 批准号:
1205558 - 财政年份:2012
- 资助金额:
$ 17.04万 - 项目类别:
Standard Grant
CAREER: Multiple Dirichlet Series, Automorphic Forms, and Combinatorial Representation Theory
职业:多重狄利克雷级数、自同构形式和组合表示理论
- 批准号:
0844185 - 财政年份:2009
- 资助金额:
$ 17.04万 - 项目类别:
Continuing Grant
Applications of the relative trace formula in higher rank
相对迹公式在高阶中的应用
- 批准号:
0758197 - 财政年份:2008
- 资助金额:
$ 17.04万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Combinatorial representation theory, multiple Dirichlet series, and moments of L-functions
FRG:协作研究:组合表示理论、多重狄利克雷级数和 L 函数矩
- 批准号:
0652529 - 财政年份:2007
- 资助金额:
$ 17.04万 - 项目类别:
Standard Grant
相似国自然基金
Dirichlet级数、Hurwitz型Dirichlet级数及相关问题研究
- 批准号:12371007
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
全纯运动以及复平面上带分形边界的Dirichlet问题
- 批准号:12201206
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Dirichlet L函数的性质研究
- 批准号:12271135
- 批准年份:2022
- 资助金额:47 万元
- 项目类别:面上项目
基于隐狄利克雷分配模型的心血管系统药物不良反应主动监测研究
- 批准号:82273739
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
自守L-函数的Dirichlet系数的算术分布
- 批准号:12271297
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
相似海外基金
Multiple Dirichlet Series and Number Theory
多重狄利克雷级数和数论
- 批准号:
1601289 - 财政年份:2016
- 资助金额:
$ 17.04万 - 项目类别:
Continuing Grant
Multiple Dirichlet series, Whittaker functions, and the cohomology of arithmetic groups
多重狄利克雷级数、惠特克函数和算术群的上同调
- 批准号:
1501832 - 财政年份:2015
- 资助金额:
$ 17.04万 - 项目类别:
Continuing Grant
CAREER: Multiple Dirichlet Series, Automorphic Forms, and Combinatorial Representation Theory
职业:多重狄利克雷级数、自同构形式和组合表示理论
- 批准号:
1258675 - 财政年份:2012
- 资助金额:
$ 17.04万 - 项目类别:
Continuing Grant
Expression of the Weyl group multiple Dirichlet series with a solvable lattice models
具有可解晶格模型的Weyl群多重狄利克雷级数的表达
- 批准号:
24740024 - 财政年份:2012
- 资助金额:
$ 17.04万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Research on arithmetic properties of multiple Dirichlet series
多重Dirichlet级数算术性质研究
- 批准号:
23540022 - 财政年份:2011
- 资助金额:
$ 17.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)