CAREER: Mechano-Responsive Biomaterials with Controlled Architectures and Improved Mechanical Properties via Biomimetic Strategies

职业:通过仿生策略具有受控架构和改进机械性能的机械响应生物材料

基本信息

  • 批准号:
    0643226
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-07-01 至 2013-12-31
  • 项目状态:
    已结题

项目摘要

This Career award to University of Delaware is funded by the Biomaterials program in the Division of Materials Research. With this project, the PI will develop biomaterials that closely resemble the structural organizations and multi-scale responsiveness of the natural extracellular matrices, but with controlled architectures and improved mechanical properties. Main focus of the proposed study will be: 1) design of mechano-responsive hydrogels by covalent cross-linking of polyethylene glycol with nanoparticles exhibiting sacrificial bonds and hidden length on their surfaces to mimic the modular domain structures present in functional proteins; 2) synthesis of mechano-responsive elastomers by recapitulating the molecular architecture of natural elastin whereby the hydrophobic domain of the native elastin is replaced with a synthetic polymer that is capable of elastic recoil, while the hydrophilic domain will be replaced with specific peptide sequences with potential structural directing capability; and 3) characterization of mechanical properties of these dynamic and modular biomaterials by microscopic and macroscopic methods. Although smart biomaterials have been designed to respond to external stimuli such as pH, temperature, reagents, electrical or magnetic fields, synthetic polymers with the ability to respond rapidly and reversibly to mechanical stresses over prolonged periods of time in the human body have yet to be developed. Given the fact that most tissues in the body are subjected to mechanical stimuli, and cells within the tissues have sophisticated machinery that actively responds to the mechanical force, it is critical that this form of signaling will be considered in the design of polymeric matrices in this project.The proposal aims to educate several graduate and undergraduate students in biomaterials and integrates them with PI's research interest in mechano-responsive biomaterials. Developing a new graduate level course in biomedical engineering to teach biomaterials/biomedical concepts to students and stimulate their interest in these areas is also part of this project. The educational component is closely integrated with the proposed research activities with the goals of inspiring high school students to pursue biomaterials/biomedical careers; and providing research opportunities for under-represented minority students with hands-on experiences in biomaterials research. The interdisciplinary nature of the proposed research and education activities will also equip graduate students with up-to-date information, experimental skills, and creative thinking that are all indispensable in the growing field of biomedical engineering. The ultimate goal is to establish research and education programs that will not only advance the field of biomedical engineering by generating biomaterials with unprecedented mechanical properties and responsiveness but also to inspire and educate the next generation of biomedical engineers and scientists.
特拉华大学的这一职业奖由材料研究部的生物材料项目资助。 通过该项目,PI 将开发与天然细胞外基质的结构组织和多尺度响应非常相似的生物材料,但具有受控的结构和改进的机械性能。拟议研究的主要重点将是:1)通过聚乙二醇与纳米颗粒的共价交联来设计机械响应水凝胶,纳米颗粒在其表面上表现出牺牲键和隐藏长度,以模拟功能蛋白中存在的模块化结构域结构; 2)通过概括天然弹性蛋白的分子结构来合成机械响应弹性体,其中天然弹性蛋白的疏水结构域被能够弹性回缩的合成聚合物取代,而亲水结构域将被具有潜力的特定肽序列取代结构导向能力; 3)通过微观和宏观方法表征这些动态和模块化生物材料的机械性能。 尽管智能生物材料被设计用于响应外部刺激,如 pH、温度、试剂、电场或磁场,但能够快速、可逆地响应人体内长时间机械应力的合成聚合物尚未被开发出来。发达。鉴于体内大多数组织都会受到机械刺激,并且组织内的细胞具有主动响应机械力的复杂机制,因此在聚合物基质的设计中考虑这种形式的信号传导至关重要。该提案旨在对几名研究生和本科生进行生物材料方面的教育,并将他们与 PI 对机械响应生物材料的研究兴趣相结合。该项目的一部分还包括开发一门新的生物医学工程研究生课程,向学生传授生物材料/生物医学概念并激发他们对这些领域的兴趣。 教育部分与拟议的研究活动紧密结合,旨在激励高中生追求生物材料/生物医学职业;为代表性不足的少数族裔学生提供研究机会,让他们获得生物材料研究的实践经验。 拟议的研究和教育活动的跨学科性质也将为研究生提供最新的信息、实验技能和创造性思维,这些在不断发展的生物医学工程领域都是不可或缺的。最终目标是建立研究和教育项目,不仅通过生产具有前所未有的机械性能和响应能力的生物材料来推进生物医学工程领域,而且还能激励和教育下一代生物医学工程师和科学家。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xinqiao Jia其他文献

Tissue Engineering Strategies for Vocal Fold Repair and Regeneration
声带修复和再生的组织工程策略
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Farran;Zhixiang Tong;R. Witt;Xinqiao Jia
  • 通讯作者:
    Xinqiao Jia
Label-free, in situ monitoring of viscoelastic properties of cellular monolayers via elastohydrodynamic phenomena
通过弹性流体动力学现象对细胞单层的粘弹性特性进行无标记原位监测
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tianzheng Guo;X. Zou;Shalini Sundar;Xinqiao Jia;Charles Dhong
  • 通讯作者:
    Charles Dhong
Chemical modification of solid surfaces and interfaces and template-assisted fabrication of surface nanostructures
固体表面和界面的化学改性以及表面纳米结构的模板辅助制造
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xinqiao Jia
  • 通讯作者:
    Xinqiao Jia
Hyaluronic acid-based hydrogels as 3D matrices for in vitro tumor engineering
基于透明质酸的水凝胶作为体外肿瘤工程的 3D 基质
Correction: Modular and orthogonal synthesis of hybrid polymers and networks.
修正:杂化聚合物和网络的模块化和正交合成。
  • DOI:
    10.1039/c5cc90042e
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Shuang Liu;Kevin T. Dicker;Xinqiao Jia
  • 通讯作者:
    Xinqiao Jia

Xinqiao Jia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xinqiao Jia', 18)}}的其他基金

Modeling Salivary Gland Fibrosis Using a Bioorthogonally Integrated Hydrogel Platform
使用生物正交集成水凝胶平台模拟唾液腺纤维化
  • 批准号:
    2243648
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Modeling Perineural Invasion Using a Bioorthogonally Integrated Hydrogel Platform
使用生物正交集成水凝胶平台模拟神经周围侵袭
  • 批准号:
    1809612
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Spatial Control of Cell Behavior via Interfacial Bioorthogonal Chemistry
通过界面生物正交化学空间控制细胞行为
  • 批准号:
    1506613
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Travel Support for "Polymeric Biomaterials" Symposium at the 249th American Chemical Society (ACS) National Meeting
第 249 届美国化学会 (ACS) 全国会议“高分子生物材料”研讨会的差旅支持
  • 批准号:
    1464454
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Bioactive Scaffolds with Elastomeric Properties for the Engineering of Mechanically Active Tissues
用于机械活性组织工程的具有弹性特性的生物活性支架
  • 批准号:
    1206310
  • 财政年份:
    2012
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Travel Support for Students, Post-Docs, and Young Faculty to Attend the Symposium on "Controlling Cellular Behavior with Polymer Synthesis and Engineering" At the 235th ACS Meeting
为学生、博士后和年轻教师参加第 235 届 ACS 会议上的“用聚合物合成和工程控制细胞行为”研讨会提供差旅支持
  • 批准号:
    0801520
  • 财政年份:
    2007
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

生物力学传导通路mechano-YAP/TAZ对放射损伤引起的勃起功能障碍中组织再生和功能修复的研究
  • 批准号:
    82373525
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
振动力量训练促进肌肉力量增加的机制研究
  • 批准号:
    10572097
  • 批准年份:
    2005
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目

相似海外基金

Mechano-responsive synthetic cells to engineer the immune response
机械响应合成细胞可设计免疫反应
  • 批准号:
    EP/X016587/1
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Fellowship
Development of Mechano-Responsive Molecular Crystals Showing a Reformation
机械响应分子晶体的发展显示出变革
  • 批准号:
    22K19058
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Mechano/Electro responsive photoluminesecent polymeric composite film
机械/电响应光致发光聚合物复合薄膜
  • 批准号:
    18K05240
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design of the high efficient mechano-responsive polymer for development novel mechano-responsive unit
高效力响应聚合物的设计用于开发新型力响应单元
  • 批准号:
    15K17907
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Regulation of vascular size and shape by a mechano-responsive transcriptional mechanism (A06)
通过机械响应转录机制调节血管大小和形状 (A06)
  • 批准号:
    159037274
  • 财政年份:
    2010
  • 资助金额:
    $ 50万
  • 项目类别:
    Collaborative Research Centres
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了