Modeling Perineural Invasion Using a Bioorthogonally Integrated Hydrogel Platform
使用生物正交集成水凝胶平台模拟神经周围侵袭
基本信息
- 批准号:1809612
- 负责人:
- 金额:$ 54.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non Technical Abstract:To accelerate the development of cancer therapies, we need to understand cancer metastasis, a process by which cancer cells detach from the primary tumor site and spread to a different tissue or organ. In addition to blood and lymph systems, cancer cells can hijack the nerves to travel to a distant location. Although nerve-guided tumor dissemination is clinically observed, the underlying mechanism remains largely unknown. The goal of this project is to develop lab-grown tumor models for studying cancer-nerve interactions. Prostate cancer cells will be allowed to aggregate in a custom-designed mold to form compact, micrometer-sized spheres. The multicellular spheres will be embedded in a gelatinous material exhibiting spatial gradients of stiffness, degradability and cell binding capacity. Aligned, micron-sized synthetic fibers capable of releasing molecules that nerve cells produce will be included in the scaffold to mimic the cancer-associated nerve fibers. Using this model, the PIs will investigate how cancer cells grow and travel along the nerve-mimicking fibers. The PIs will determine whether the nerve-guided cell migration can be blocked by compounds that reduce the association of cancer cells with the nerve. These studies will improve understanding of cancer metastasis and accelerate the design of innovative strategies for cancer diagnosis and treatment, thus justifying the public support. Our outreach and education efforts will help maintain the United States' global competitiveness. In addition to course development and student training, effort will be dedicated to the engaging and empowering of pre-service, early childhood teachers who will inspire the next generation scientists.Technical Abstract:This award by the Biomaterials Program in the Division of Materials Research to the University of Delaware (UD) aims to engineer a physiologically relevant tumor model with an integrated cancer-nerve interface to better understand perineural invasion, a process in which malignant cells migrate along, around and through nerves to a distal location. We will accomplish this goal by culturing pre-assembled multicellular tumoroids in a hyaluronic acid-derived hydrogel matrix containing nerve mimicking polymer fibers. The engineered microenvironment will be produced via a novel interfacial crosslinking process employing the rapid, bioorthogonal and highly efficient cycloaddition reaction between s-tetrazines and trans-cyclooctene derivatives. The hydrogel matrix will exhibit defined spatial gradients to promote cell proliferation, aggregation and migration, while the aligned, micron-sized fibers will mimic the tumor-associated nerve fibers structurally and biochemically. We will characterize the phenotype and migration of prostate cancer cells, as well as their responses to pharmacological inhibitors. The goal is to gain improved understanding of the neurotropism of malignant cancer cells, accelerating the design of innovative strategies for cancer diagnosis and treatment. The proposed research activity will not only contribute to the education of the next generation scientists and engineers, but also empower early childhood teachers. Concerted effort will be dedicated to the creation of discovery-based teaching modules, lab-based research modules and community-based design and innovation activities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:为了加速癌症疗法的发展,我们需要了解癌症转移,这是癌细胞从原发肿瘤部位分离并扩散到不同组织或器官的过程。除了血液和淋巴系统之外,癌细胞还可以劫持神经前往远处。尽管临床上观察到神经引导的肿瘤播散,但其潜在机制仍然很大程度上未知。该项目的目标是开发实验室培养的肿瘤模型来研究癌症与神经的相互作用。前列腺癌细胞将被允许聚集在定制设计的模具中,形成紧凑的微米大小的球体。多细胞球体将嵌入凝胶状材料中,该材料表现出刚度、可降解性和细胞结合能力的空间梯度。能够释放神经细胞产生的分子的排列整齐的微米级合成纤维将被包含在支架中,以模仿与癌症相关的神经纤维。使用这个模型,PI 将研究癌细胞如何沿着模拟神经纤维生长和传播。 PI 将确定是否可以通过减少癌细胞与神经关联的化合物来阻断神经引导的细胞迁移。这些研究将增进对癌症转移的认识,加速癌症诊断和治疗创新策略的设计,从而证明公众支持的合理性。我们的外展和教育工作将有助于保持美国的全球竞争力。除了课程开发和学生培训之外,我们还将致力于吸引职前幼儿教师并为其赋权,他们将激励下一代科学家。技术摘要:该奖项由材料研究部生物材料项目授予特拉华大学 (UD) 的目标是设计一个具有集成癌症-神经界面的生理相关肿瘤模型,以更好地了解神经周围侵袭,这是恶性细胞沿着、围绕和穿过神经迁移到远端位置的过程。我们将通过在含有神经模拟聚合物纤维的透明质酸衍生水凝胶基质中培养预组装的多细胞肿瘤来实现这一目标。工程微环境将通过新型界面交联过程产生,该过程采用s-四嗪和反式环辛烯衍生物之间的快速、生物正交和高效的环加成反应。水凝胶基质将表现出明确的空间梯度,以促进细胞增殖、聚集和迁移,而排列整齐的微米级纤维将在结构和生化上模仿肿瘤相关的神经纤维。我们将描述前列腺癌细胞的表型和迁移,以及它们对药物抑制剂的反应。目标是加深对恶性癌细胞向神经性的了解,加速癌症诊断和治疗创新策略的设计。拟议的研究活动不仅将有助于下一代科学家和工程师的教育,还将增强幼儿教师的能力。共同努力将致力于创建基于发现的教学模块、基于实验室的研究模块以及基于社区的设计和创新活动。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和技术进行评估,被认为值得支持。更广泛的影响审查标准。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Core–Shell Microfibers via Bioorthogonal Layer-by-Layer Assembly
通过生物正交逐层组装的核壳超细纤维
- DOI:10.1021/acsmacrolett.0c00515
- 发表时间:2020
- 期刊:
- 影响因子:7.015
- 作者:Ravikrishnan, A.;Zhang, H.;Fox, J. M.;Jia, X.
- 通讯作者:Jia, X.
Hydrogel-Supported, Engineered Model of Vocal Fold Epithelium.
- DOI:10.1021/acsbiomaterials.0c01741
- 发表时间:2021-09-13
- 期刊:
- 影响因子:5.8
- 作者:Ravikrishnan A;Fowler EW;Stuffer AJ;Jia X
- 通讯作者:Jia X
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xinqiao Jia其他文献
Tissue Engineering Strategies for Vocal Fold Repair and Regeneration
声带修复和再生的组织工程策略
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
A. Farran;Zhixiang Tong;R. Witt;Xinqiao Jia - 通讯作者:
Xinqiao Jia
Label-free, in situ monitoring of viscoelastic properties of cellular monolayers via elastohydrodynamic phenomena
通过弹性流体动力学现象对细胞单层的粘弹性特性进行无标记原位监测
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Tianzheng Guo;X. Zou;Shalini Sundar;Xinqiao Jia;Charles Dhong - 通讯作者:
Charles Dhong
Chemical modification of solid surfaces and interfaces and template-assisted fabrication of surface nanostructures
固体表面和界面的化学改性以及表面纳米结构的模板辅助制造
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Xinqiao Jia - 通讯作者:
Xinqiao Jia
Hyaluronic acid-based hydrogels as 3D matrices for in vitro tumor engineering
基于透明质酸的水凝胶作为体外肿瘤工程的 3D 基质
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Xian Xu;Xinqiao Jia - 通讯作者:
Xinqiao Jia
Correction: Modular and orthogonal synthesis of hybrid polymers and networks.
修正:杂化聚合物和网络的模块化和正交合成。
- DOI:
10.1039/c5cc90042e - 发表时间:
2015 - 期刊:
- 影响因子:4.9
- 作者:
Shuang Liu;Kevin T. Dicker;Xinqiao Jia - 通讯作者:
Xinqiao Jia
Xinqiao Jia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xinqiao Jia', 18)}}的其他基金
Modeling Salivary Gland Fibrosis Using a Bioorthogonally Integrated Hydrogel Platform
使用生物正交集成水凝胶平台模拟唾液腺纤维化
- 批准号:
2243648 - 财政年份:2023
- 资助金额:
$ 54.6万 - 项目类别:
Standard Grant
Spatial Control of Cell Behavior via Interfacial Bioorthogonal Chemistry
通过界面生物正交化学空间控制细胞行为
- 批准号:
1506613 - 财政年份:2015
- 资助金额:
$ 54.6万 - 项目类别:
Continuing Grant
Travel Support for "Polymeric Biomaterials" Symposium at the 249th American Chemical Society (ACS) National Meeting
第 249 届美国化学会 (ACS) 全国会议“高分子生物材料”研讨会的差旅支持
- 批准号:
1464454 - 财政年份:2015
- 资助金额:
$ 54.6万 - 项目类别:
Standard Grant
Bioactive Scaffolds with Elastomeric Properties for the Engineering of Mechanically Active Tissues
用于机械活性组织工程的具有弹性特性的生物活性支架
- 批准号:
1206310 - 财政年份:2012
- 资助金额:
$ 54.6万 - 项目类别:
Continuing Grant
Travel Support for Students, Post-Docs, and Young Faculty to Attend the Symposium on "Controlling Cellular Behavior with Polymer Synthesis and Engineering" At the 235th ACS Meeting
为学生、博士后和年轻教师参加第 235 届 ACS 会议上的“用聚合物合成和工程控制细胞行为”研讨会提供差旅支持
- 批准号:
0801520 - 财政年份:2007
- 资助金额:
$ 54.6万 - 项目类别:
Standard Grant
CAREER: Mechano-Responsive Biomaterials with Controlled Architectures and Improved Mechanical Properties via Biomimetic Strategies
职业:通过仿生策略具有受控架构和改进机械性能的机械响应生物材料
- 批准号:
0643226 - 财政年份:2007
- 资助金额:
$ 54.6万 - 项目类别:
Standard Grant
相似国自然基金
Mef2c通过激活pEMT途径维持rSCs表型促进周围神经长段缺损修复的作用机制研究
- 批准号:82371388
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
负载COL6α2模拟肽的生物套管协同NCAM1促周围神经缺损修复的作用及机制研究
- 批准号:32301265
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于力学仿生柔性神经移植物修复周围神经缺损的研究
- 批准号:32301111
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
定向纤维水凝胶靶向雪旺细胞衰老重塑微环境促进周围神经再生及机制研究
- 批准号:32301144
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于仿生丝胶压电神经导管原位电刺激促长距离周围神经离断再生修复及相关机制研究
- 批准号:82372511
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Detection, Radiosensitization and Theranostic Targeting of Metastatic Breast Cancer by PTPmu
PTPmu 转移性乳腺癌的检测、放射增敏和治疗诊断靶向
- 批准号:
10594178 - 财政年份:2022
- 资助金额:
$ 54.6万 - 项目类别:
The role of sympathetic nerve associated macrophages during pancreatic adenocarcinoma progression
交感神经相关巨噬细胞在胰腺腺癌进展中的作用
- 批准号:
10315610 - 财政年份:2021
- 资助金额:
$ 54.6万 - 项目类别:
The role of sympathetic nerve associated macrophages during pancreatic adenocarcinoma progression
交感神经相关巨噬细胞在胰腺腺癌进展中的作用
- 批准号:
10653062 - 财政年份:2021
- 资助金额:
$ 54.6万 - 项目类别:
Engineered Enteric Nervous System-Peri Neural Invasion platform to improve predictive preclinical screens in early-stage colorectal adenocarcinomas
工程肠神经系统-周围神经侵袭平台可改善早期结直肠腺癌的预测性临床前筛查
- 批准号:
10439886 - 财政年份:2021
- 资助金额:
$ 54.6万 - 项目类别:
The role of sympathetic nerve associated macrophages during pancreatic adenocarcinoma progression
交感神经相关巨噬细胞在胰腺腺癌进展中的作用
- 批准号:
10458523 - 财政年份:2021
- 资助金额:
$ 54.6万 - 项目类别: