Bioactive Scaffolds with Elastomeric Properties for the Engineering of Mechanically Active Tissues
用于机械活性组织工程的具有弹性特性的生物活性支架
基本信息
- 批准号:1206310
- 负责人:
- 金额:$ 42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award by the Biomaterials Program in the Division of Materials Research to the University of Delaware aims to develop synthetic scaffolding materials with robust mechanical properties and defined biological activities for use in the engineering of mechanically active tissues. The investigators will accomplish this goal using chemically modified poly (epsilon-caprolactone) as the base material and multiblock alternating copolymers of peptides and poly(ethylene glycol) for bio-functionalization purposes. Novel electrospinning protocols will be developed for the fabrication of fibrous, elastomeric scaffolds that facilitate the infiltration and attachment of stem cells, and at the same time mediate their lineage-specific differentiation. The proposed hybrid systems overcome the major limitations of existing scaffolding materials and are conducive to the successful engineering of mechanically active tissues. The proposed research program integrates well with the University's effort to establish a new biomedical engineering department, providing a fertile biomaterials training ground for undergraduate and graduate students at Univ. of Delaware. It will also allow the investigators work with teachers at the Newark Center for Creative Learning to advance science education and experimental learning.Tissue engineering is a fast-growing field that aims to create artificial tissues or organs to replace damaged or diseased ones. In healthy tissue, cells reside in a three-dimensional matrix that provides proper mechanical support and developmental guidance. To create artificial replacement tissues, one must recreate the environment in which the cells originally live. The artificial scaffolds must be highly porous, display important biological signals and be able to sustain repetitive mechanical deformation without breaking down. The purpose of this research is to develop such materials that can be used to coax cells to grow, communicate with each other and to produce their own matrices with the correct composition, structure and function. This will be accomplished by combining a base material with the desired mechanical properties with an engineered, protein-like macromolecule that contains repetitive segments of synthetic polymers and natural peptides, through a novel electrospinning process to create matrices with fibers at the nanometer length scale. This work will enable the creation of sophisticated biomaterials to improve human health, thus justifying the public support. The outreach and education efforts with this award will help maintain the global competitiveness of United States. Efforts with this award will include the establishment of a biomedical engineering department at Univ. of Delaware, the training of undergraduate and graduate students, the mentoring of underrepresented minority students and the development of learning tools for a local elementary school.
生物材料计划在特拉华大学材料研究部的奖项旨在开发具有强大的机械性能的合成脚手架材料,并定义了生物学活动,以用于机械活性组织的工程。研究人员将使用化学修饰的聚(Epsilon-caprolactone)作为肽的基本材料和多块交替共聚物和聚(乙烯乙二醇)来实现这一目标,以实现生物官能化的目的。将开发新的静电纺丝方案,用于制造纤维,弹性脚手架,以促进干细胞的浸润和附着,同时介导其谱系特异性分化。拟议的混合动力系统克服了现有脚手架材料的主要局限性,并有利于机械活性组织的成功工程。拟议的研究计划与大学建立新的生物医学工程系的努力融为一体,为大学的本科生和研究生提供了肥沃的生物材料培训场。特拉华州。这还将允许研究人员与纽瓦克创意学习中心的教师合作,以推进科学教育和实验学习。TissueEngineering是一个快速成长的领域,旨在创建人造组织或器官以取代受损或患病的人。在健康组织中,细胞居住在三维矩阵中,提供适当的机械支持和发育指导。要创建人造替代组织,必须重新创建细胞最初生活的环境。人造脚手架必须高度多孔,显示重要的生物学信号,并能够维持重复的机械变形而不会破裂。这项研究的目的是开发可用于哄骗细胞生长,相互交流并以正确组成,结构和功能生产自己的矩阵的材料。这将通过将基本材料与所需的机械性能与设计的蛋白质样大分子结合在一起来实现,该特性包含合成聚合物和天然肽的重复段,通过新型的静电纺丝过程,通过在纳米长度尺度上创建带有纤维的矩阵,以创建矩阵。这项工作将使创造复杂的生物材料的创建以改善人类健康,从而证明公众的支持是合理的。通过该奖项的外展和教育工作将有助于维持美国的全球竞争力。该奖项的努力将包括在大学建立生物医学工程系。特拉华州的培训,本科生和研究生的培训,代表人数不足的少数族裔学生的指导以及为当地小学的学习工具的开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xinqiao Jia其他文献
Tissue Engineering Strategies for Vocal Fold Repair and Regeneration
声带修复和再生的组织工程策略
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
A. Farran;Zhixiang Tong;R. Witt;Xinqiao Jia - 通讯作者:
Xinqiao Jia
Label-free, in situ monitoring of viscoelastic properties of cellular monolayers via elastohydrodynamic phenomena
通过弹性流体动力学现象对细胞单层的粘弹性特性进行无标记原位监测
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Tianzheng Guo;X. Zou;Shalini Sundar;Xinqiao Jia;Charles Dhong - 通讯作者:
Charles Dhong
Chemical modification of solid surfaces and interfaces and template-assisted fabrication of surface nanostructures
固体表面和界面的化学改性以及表面纳米结构的模板辅助制造
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Xinqiao Jia - 通讯作者:
Xinqiao Jia
Hyaluronic acid-based hydrogels as 3D matrices for in vitro tumor engineering
基于透明质酸的水凝胶作为体外肿瘤工程的 3D 基质
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Xian Xu;Xinqiao Jia - 通讯作者:
Xinqiao Jia
Salivary Gland Tissue Engineering and Repair
唾液腺组织工程与修复
- DOI:
10.1016/b978-0-12-397157-9.00050-3 - 发表时间:
2015 - 期刊:
- 影响因子:7.6
- 作者:
S. Pradhan;K. Cannon;D. Zakheim;D. Harrington;R. Duncan;Xinqiao Jia;M. Farach;R. Witt - 通讯作者:
R. Witt
Xinqiao Jia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xinqiao Jia', 18)}}的其他基金
Modeling Salivary Gland Fibrosis Using a Bioorthogonally Integrated Hydrogel Platform
使用生物正交集成水凝胶平台模拟唾液腺纤维化
- 批准号:
2243648 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Modeling Perineural Invasion Using a Bioorthogonally Integrated Hydrogel Platform
使用生物正交集成水凝胶平台模拟神经周围侵袭
- 批准号:
1809612 - 财政年份:2018
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Spatial Control of Cell Behavior via Interfacial Bioorthogonal Chemistry
通过界面生物正交化学空间控制细胞行为
- 批准号:
1506613 - 财政年份:2015
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Travel Support for "Polymeric Biomaterials" Symposium at the 249th American Chemical Society (ACS) National Meeting
第 249 届美国化学会 (ACS) 全国会议“高分子生物材料”研讨会的差旅支持
- 批准号:
1464454 - 财政年份:2015
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Travel Support for Students, Post-Docs, and Young Faculty to Attend the Symposium on "Controlling Cellular Behavior with Polymer Synthesis and Engineering" At the 235th ACS Meeting
为学生、博士后和年轻教师参加第 235 届 ACS 会议上的“用聚合物合成和工程控制细胞行为”研讨会提供差旅支持
- 批准号:
0801520 - 财政年份:2007
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
CAREER: Mechano-Responsive Biomaterials with Controlled Architectures and Improved Mechanical Properties via Biomimetic Strategies
职业:通过仿生策略具有受控架构和改进机械性能的机械响应生物材料
- 批准号:
0643226 - 财政年份:2007
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
相似国自然基金
IGF2BP1识别的circ_0004578作为"分子脚手架"调控有氧糖酵解增强肺腺癌奥希替尼耐药的机制研究
- 批准号:82303904
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脚手架蛋白TaRACK1介导小麦抗中国小麦花叶病毒病的分子机制研究
- 批准号:32372488
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
脚手架蛋白RanBP9通过调控细胞周期停滞和获得SASP介导应激性衰老促进AKI向CKD转化的作用及机制
- 批准号:82300777
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RGMA-TRIM16-Ezrin脚手架蛋白复合体抑制胃癌淋巴转移的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RGMA-TRIM16-Ezrin脚手架蛋白复合体抑制胃癌淋巴转移的机制研究
- 批准号:82203774
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Fibrous Elastomeric Scaffolds via Melt Electrospinning Writing for Heart Valve Tissue Engineering
通过熔融静电纺丝制备纤维弹性支架用于心脏瓣膜组织工程
- 批准号:
549059-2020 - 财政年份:2020
- 资助金额:
$ 42万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
Biodegradable Field-Effect Transitors for Electronically Active Scaffolds
用于电子活性支架的可生物降解场效应晶体管
- 批准号:
7611447 - 财政年份:2009
- 资助金额:
$ 42万 - 项目类别: