Mathematical and computational modeling of fluid-structure-control interactions with multidisciplinary applications in science and engineering

流体-结构-控制相互作用的数学和计算建模与科学和工程中的多学科应用

基本信息

  • 批准号:
    0610026
  • 负责人:
  • 金额:
    $ 20.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-07-01 至 2008-09-30
  • 项目状态:
    已结题

项目摘要

The efficient solution of modeling the complex nonlinear interaction of a fluid with a structure has remained a challenging problem in computational mathematics. Such applications often involve complex dynamic interactions of multiple physical processes which present a significant challenge, both in representing the multiphysics involved and in handling the resulting coupled behavior. If the desire to control and design the system is added to the picture, then the complexity increases even further. The focus of the proposed research will therefore be to sytematically develop non-conforming finite element methods tuned to high performance computing applied to several computatationally challenging multidisciplinary applications involving fluid-strucuture-control interaction. The thrust will be to mathematically and computationally investigate the stability, convergence and control of a variety of non-conforming finite element techniques and use this information to develop an efficient and general solution methodology for fluid-structure-control applications. More specifically, the proposed research will explore the robustness of this methodology by investigating (a) computational stability and convergence of fully-coupled algorithms; (b) computational stability and convergence for iterative coupling and; (c) theoretical and computational investigation for shape, boundary and distributed control applications. The performance of the compuational algorithms developed as a part of this research will be applied to two realistic fluid-structure applications: (a) Blood flow in a parent-artery-aneurysm multistructure and (b) Computational aeroelasticity of micro-air-vehicles. The proposed research aims to develop optimal computational algorithms for fluid-stucture-control interaction problems arising in science and engineering applications. The proposed work is highly multidisciplinary and the algorithms developed as a part of this research can be quickly adopted to a wide range of engineering and medical applications. For instance, this research may be used to better understand the rupture of aneurysms which are responsible for significant morbidity and mortality in the country. This work may also be used to develop enhanced and efficient design of micro air vehicles with flexible aircraft wings, that may be used for a variety of missions such as reconnaissance and surveillance, targeting, tagging, bio-chemical sensing and many more. Integrated with the research component is also an educational plan that will encourage interdisciplinary research, that will involve the pedagogical implications of the proposed research in curriculum development and that will contribute to the scientific development of graduate students, undergraduate students, high school students and teachers. More specifically, the proposed research will be used to develop learning modules that will be used to train students and teachers on the efficient use of compuatational mathematics to solve multidisciplinary problems in science and engineering. The research will also greatly encourage women and underrepresented minorities to pursue careers in computational mathematics, especially in interdisciplinary areas that bridge the biological, mathematical, and compuational sciences.
在计算数学中,对流体与结构的复杂非线性相互作用进行建模的有效解决方案仍然是一个具有挑战性的问题。这种应用通常涉及多个物理过程的复杂动态相互作用,这些过程在表示所涉及的多物理和处理所得的耦合行为方面都带来了重大挑战。如果将控制和设计系统的愿望添加到图片中,那么复杂性就会进一步增加。因此,拟议的研究的重点将是在秘密上开发不合格的有限元方法,该方法调整了用于高性能计算的高性能计算,该方法应用于几种涉及流体 - 检测到控制相互作用的计算挑战性的多学科应用。该推力将是在数学上和计算上研究各种不合格的有限元技术的稳定性,收敛性和控制,并使用此信息为流体结构控制应用开发有效且一般的解决方案方法。更具体地说,拟议的研究将通过研究(a)(a)完全耦合算法的计算稳定性和收敛性来探讨该方法的鲁棒性。 (b)迭代耦合的计算稳定性和收敛性和; (c)形状,边界和分布式控制应用的理论和计算研究。作为这项研究的一部分开发的组合算法的性能将应用于两个逼真的流体结构应用:(a)亲本 - 动脉瘤多结构中的血流,以及(b)微动物的计算空气弹性。拟议的研究旨在开发最佳的计算算法,以用于在科学和工程应用中引起的流体结构控制问题。拟议的工作是高度多学科的,作为这项研究的一部分,开发的算法可以快速地用于广泛的工程和医疗应用。例如,这项研究可以用来更好地理解负责该国大量发病率和死亡率的动脉瘤的破裂。这项工作还可以用来开发具有灵活的飞机机翼的微型航空车辆的增强,有效的设计,这些车辆可用于各种任务,例如侦察和监视,靶向,标记,标签,生物化学感应等。与研究组成部分集成的也是一项教育计划,它将鼓励跨学科研究,这将涉及拟议的课程发展研究的教学意义,这将有助于研究生,本科生,高中生和老师的科学发展。 更具体地说,拟议的研究将用于开发学习模块,该模块将用于培训学生和教师有效利用合成数学来解决科学和工程中的多学科问题。这项研究还将极大地鼓励妇女和代表性不足的少数民族从事计算数学的职业,尤其是在弥合生物学,数学和合成科学的跨学科领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Padmanabhan Seshaiyer其他文献

Padmanabhan Seshaiyer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Padmanabhan Seshaiyer', 18)}}的其他基金

Collaborative Research: NSF Workshop on Models for Uncovering Rules and Unexpected Phenomena in Biological Systems (MODULUS)
合作研究:NSF 揭示生物系统规则和意外现象模型研讨会 (MODULUS)
  • 批准号:
    2232739
  • 财政年份:
    2022
  • 资助金额:
    $ 20.05万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Modeling, Analysis and Control of COVID-19 Spread in an Aircraft Cabin using Physics Informed Deep Learning
RAPID:协作研究:使用物理信息深度学习对机舱内的 COVID-19 传播进行建模、分析和控制
  • 批准号:
    2031029
  • 财政年份:
    2020
  • 资助金额:
    $ 20.05万
  • 项目类别:
    Standard Grant
Collaborative Research: RoL: FELS: Workshop - Rules of Life in the Context of Future Mathematical Sciences
合作研究:RoL:FELS:研讨会 - 未来数学科学背景下的生命规则
  • 批准号:
    1839608
  • 财政年份:
    2018
  • 资助金额:
    $ 20.05万
  • 项目类别:
    Standard Grant
Investigating Mathematical Modeling, Experiential Learning and Research through Professional Development and an Integrated Online Network for Elementary Teachers
通过专业发展和小学教师综合在线网络研究数学建模、体验式学习和研究
  • 批准号:
    1441024
  • 财政年份:
    2014
  • 资助金额:
    $ 20.05万
  • 项目类别:
    Standard Grant
REU Site: Research, Education and Training in Computational Mathematics and Nonlinear Dynamics of Bio-Inspired and Engineering Systems
REU 网站:计算数学以及仿生和工程系统非线性动力学的研究、教育和培训
  • 批准号:
    1062633
  • 财政年份:
    2011
  • 资助金额:
    $ 20.05万
  • 项目类别:
    Standard Grant
REU: Multidisciplinary REU in Computational Mathematics and Nonlinear Dynamics of Biological, Bio-inspired and Engineering Systems
REU:计算数学和生物、仿生和工程系统非线性动力学的多学科 REU
  • 批准号:
    0851612
  • 财政年份:
    2009
  • 资助金额:
    $ 20.05万
  • 项目类别:
    Continuing Grant
Mathematical and computational modeling of fluid-structure-control interactions with multidisciplinary applications in science and engineering
流体-结构-控制相互作用的数学和计算建模与科学和工程中的多学科应用
  • 批准号:
    0813825
  • 财政年份:
    2007
  • 资助金额:
    $ 20.05万
  • 项目类别:
    Standard Grant
REU: Multidisciplinary Summer Undergraduate Research Program in Computation and Control of Biological and Biologically Inspired Systems
REU:生物和生物启发系统的计算与控制多学科夏季本科研究计划
  • 批准号:
    0552908
  • 财政年份:
    2006
  • 资助金额:
    $ 20.05万
  • 项目类别:
    Continuing Grant
Mini-symposium on Mathematical and Computational Modeling of Biological Systems
生物系统数学与计算建模小型研讨会
  • 批准号:
    0325948
  • 财政年份:
    2003
  • 资助金额:
    $ 20.05万
  • 项目类别:
    Standard Grant
Non-Conforming HP Finite Element Methods for Computational Modeling of Problems in Science and Engineering
用于科学与工程问题计算建模的非相容 HP 有限元方法
  • 批准号:
    0207327
  • 财政年份:
    2002
  • 资助金额:
    $ 20.05万
  • 项目类别:
    Standard Grant

相似国自然基金

基于知识重用的车身自动几何建模方法研究
  • 批准号:
    51905389
  • 批准年份:
    2019
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
有理插值算子、保凸插值的深入研究
  • 批准号:
    61772025
  • 批准年份:
    2017
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
面向产品意象造型的认知思维与先进设计方法研究
  • 批准号:
    51465037
  • 批准年份:
    2014
  • 资助金额:
    46.0 万元
  • 项目类别:
    地区科学基金项目
面向三维服装建模的形状分析与处理方法研究
  • 批准号:
    61462051
  • 批准年份:
    2014
  • 资助金额:
    45.0 万元
  • 项目类别:
    地区科学基金项目
半序微结构多孔模型双尺度设计优化
  • 批准号:
    61472356
  • 批准年份:
    2014
  • 资助金额:
    84.0 万元
  • 项目类别:
    面上项目

相似海外基金

Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
  • 批准号:
    10677047
  • 财政年份:
    2023
  • 资助金额:
    $ 20.05万
  • 项目类别:
Spatio-temporal mechanistic modeling of whole-cell tumor metabolism
全细胞肿瘤代谢的时空机制模型
  • 批准号:
    10645919
  • 财政年份:
    2023
  • 资助金额:
    $ 20.05万
  • 项目类别:
Core 2: Ecological Core
核心2:生态核心
  • 批准号:
    10730409
  • 财政年份:
    2023
  • 资助金额:
    $ 20.05万
  • 项目类别:
Novel Hybrid Computational Models to Disentangle Complex Immune Responses
新型混合计算模型可解开复杂的免疫反应
  • 批准号:
    10794448
  • 财政年份:
    2023
  • 资助金额:
    $ 20.05万
  • 项目类别:
Learn Systems Biology Equations From Snapshot Single Cell Genomic Data
从快照单细胞基因组数据学习系统生物学方程
  • 批准号:
    10736507
  • 财政年份:
    2023
  • 资助金额:
    $ 20.05万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了