RAPID: Collaborative Research: Modeling, Analysis and Control of COVID-19 Spread in an Aircraft Cabin using Physics Informed Deep Learning
RAPID:协作研究:使用物理信息深度学习对机舱内的 COVID-19 传播进行建模、分析和控制
基本信息
- 批准号:2031029
- 负责人:
- 金额:$ 6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will model, analyze, predict, and present control mechanisms for a COVID-19 outbreak through an airborne infection in an aircraft cabin. As air travel resumes, it is expected that many passengers would be exposed to and possibly infected by the COVID-19 virus. As a result, there is an urgent need to rapidly develop solutions to determine the speed of the contagion by understanding the dynamics of the airflow inside aircraft. This research will combine four separate multi-physics models representing fluid dynamics, scalar transport, epidemiology, and airborne infection to analyze the spread of COVID-19 within a closed system such as an airplane. The multidisciplinary nature of this research will yield new algorithms at the interface of computational mathematics, deep learning, data science, epidemiology, and fluid dynamics and will provide novel techniques that can be directly applied to large-scale data to allow efficient and powerful data analysis. The project will also serve as valuable training for students. Open-source codes will be made available to the user community and will be open to contributions from end-users, academic researchers, industry members, practitioners, and government research labs. The research may also be extended to other physical spaces, such as marine vessels, trains, buses, or any other medium of public transportation systems.This research will accomplish the following specific objectives (a) develop a fully 3-dimensional computational model capturing realistic geometry and coupling four different physical and biological systems; (b) implement a hidden multi-physics neural network framework to enable data assimilation and; (c) evaluate the predictive capability using simulated, experimental and observational data in addition to developing and studying novel control and reinforcement learning mechanisms. The framework considers the characteristics of the exhalation of the droplets from COVID-19 infected members on an airplane that may not be wearing face masks, tracking the dispersion of these droplets, and tracking the inhalation of the droplets by susceptible passengers through these coupled multi-physics models. The research will help to develop a novel physics-informed deep-learning framework that will be capable of encoding the multi-physics system of equations modeled into the neural networks while being agnostic to the geometry or the initial and boundary conditions. Progress on the goals will provide advances in data-driven discovery, which will allow a better understanding of the impact of COVID-19. This grant is being awarded using funds made available by the Coronavirus Aid, Relief, and Economic Security (CARES) Act supplement allocated to MPS.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将对通过机舱内空气传播感染爆发的 COVID-19 疫情进行建模、分析、预测和展示控制机制。随着航空旅行的恢复,预计许多乘客将接触并可能感染 COVID-19 病毒。因此,迫切需要快速开发解决方案,通过了解飞机内部气流的动态来确定传染速度。这项研究将结合代表流体动力学、标量传输、流行病学和空气传播感染的四个独立的多物理模型来分析 COVID-19 在飞机等封闭系统内的传播。这项研究的多学科性质将在计算数学、深度学习、数据科学、流行病学和流体动力学的接口上产生新的算法,并将提供可直接应用于大规模数据的新技术,以实现高效、强大的数据分析。该项目还将为学生提供宝贵的培训。开源代码将提供给用户社区,并向最终用户、学术研究人员、行业成员、从业者和政府研究实验室开放贡献。该研究还可以扩展到其他物理空间,例如船舶、火车、公共汽车或任何其他公共交通系统媒介。这项研究将实现以下具体目标(a)开发一个完整的 3 维计算模型,捕获真实的数据几何和耦合四种不同的物理和生物系统; (b) 实施隐藏的多物理场神经网络框架以实现数据同化; (c) 除了开发和研究新的控制和强化学习机制之外,还使用模拟、实验和观察数据评估预测能力。该框架考虑了飞机上可能未戴口罩的 COVID-19 感染成员呼出飞沫的特征,跟踪这些飞沫的分散情况,并通过这些耦合的多方跟踪易感乘客吸入飞沫的情况。物理模型。该研究将有助于开发一种新颖的基于物理的深度学习框架,该框架能够将建模到神经网络中的多物理方程系统进行编码,同时与几何形状或初始条件和边界条件无关。这些目标的进展将推动数据驱动的发现取得进展,从而更好地了解 COVID-19 的影响。这笔赠款是使用分配给 MPS 的冠状病毒援助、救济和经济安全 (CARES) 法案补充提供的资金来授予的。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的评估进行评估,被认为值得支持。影响审查标准。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mathematical modeling, analysis, and simulation of the COVID-19 pandemic with explicit and implicit behavioral changes
对具有显性和隐性行为变化的 COVID-19 大流行进行数学建模、分析和模拟
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Ohajunwa, Comfort;Kumar, Kirthi;Seshaiyer, Padmanabhan
- 通讯作者:Seshaiyer, Padmanabhan
Modeling, analysis and physics informed neural network approaches for studying the dynamics of Covid-19 involving human-human and human-pathogen interaction
- DOI:10.1515/cmb-2022-0001
- 发表时间:2022-01-01
- 期刊:
- 影响因子:0
- 作者:Nguyen, L.;Raissi, M.;Seshaiyer, P
- 通讯作者:Seshaiyer, P
Computational modeling, analysis and simulation for lockdown dynamics of COVID-19 and domestic violence
COVID-19 和家庭暴力的封锁动态的计算建模、分析和模拟
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0.8
- 作者:Comfort Ohajunwa, Carmen Caiseda
- 通讯作者:Comfort Ohajunwa, Carmen Caiseda
Efficient Physics Informed Neural Networks Coupled with Domain Decomposition Methods for Solving Coupled Multi-physics Problems
高效的物理信息神经网络与域分解方法相结合,用于解决耦合多物理问题
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Long Nguyen, Maziar Raissi
- 通讯作者:Long Nguyen, Maziar Raissi
Mathematical Modeling, Analysis, and Simulation of the COVID-19 Pandemic with Behavioral Patterns and Group Mixing
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Comfort Ohajunwa;P. Seshaiyer
- 通讯作者:Comfort Ohajunwa;P. Seshaiyer
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Padmanabhan Seshaiyer其他文献
Padmanabhan Seshaiyer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Padmanabhan Seshaiyer', 18)}}的其他基金
Collaborative Research: NSF Workshop on Models for Uncovering Rules and Unexpected Phenomena in Biological Systems (MODULUS)
合作研究:NSF 揭示生物系统规则和意外现象模型研讨会 (MODULUS)
- 批准号:
2232739 - 财政年份:2022
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Collaborative Research: RoL: FELS: Workshop - Rules of Life in the Context of Future Mathematical Sciences
合作研究:RoL:FELS:研讨会 - 未来数学科学背景下的生命规则
- 批准号:
1839608 - 财政年份:2018
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Investigating Mathematical Modeling, Experiential Learning and Research through Professional Development and an Integrated Online Network for Elementary Teachers
通过专业发展和小学教师综合在线网络研究数学建模、体验式学习和研究
- 批准号:
1441024 - 财政年份:2014
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
REU Site: Research, Education and Training in Computational Mathematics and Nonlinear Dynamics of Bio-Inspired and Engineering Systems
REU 网站:计算数学以及仿生和工程系统非线性动力学的研究、教育和培训
- 批准号:
1062633 - 财政年份:2011
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
REU: Multidisciplinary REU in Computational Mathematics and Nonlinear Dynamics of Biological, Bio-inspired and Engineering Systems
REU:计算数学和生物、仿生和工程系统非线性动力学的多学科 REU
- 批准号:
0851612 - 财政年份:2009
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Mathematical and computational modeling of fluid-structure-control interactions with multidisciplinary applications in science and engineering
流体-结构-控制相互作用的数学和计算建模与科学和工程中的多学科应用
- 批准号:
0813825 - 财政年份:2007
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Mathematical and computational modeling of fluid-structure-control interactions with multidisciplinary applications in science and engineering
流体-结构-控制相互作用的数学和计算建模与科学和工程中的多学科应用
- 批准号:
0610026 - 财政年份:2006
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
REU: Multidisciplinary Summer Undergraduate Research Program in Computation and Control of Biological and Biologically Inspired Systems
REU:生物和生物启发系统的计算与控制多学科夏季本科研究计划
- 批准号:
0552908 - 财政年份:2006
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Mini-symposium on Mathematical and Computational Modeling of Biological Systems
生物系统数学与计算建模小型研讨会
- 批准号:
0325948 - 财政年份:2003
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Non-Conforming HP Finite Element Methods for Computational Modeling of Problems in Science and Engineering
用于科学与工程问题计算建模的非相容 HP 有限元方法
- 批准号:
0207327 - 财政年份:2002
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
相似国自然基金
基于交易双方异质性的工程项目组织间协作动态耦合研究
- 批准号:72301024
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向协作感知车联网的信息分发时效性保证关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Unlocking the evolutionary history of Schiedea (carnation family, Caryophyllaceae): rapid radiation of an endemic plant genus in the Hawaiian Islands
合作研究:解开石竹科(石竹科)石竹的进化史:夏威夷群岛特有植物属的快速辐射
- 批准号:
2426560 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
RAPID: Reimagining a collaborative future: engaging community with the Andrews Forest Research Program
RAPID:重新构想协作未来:让社区参与安德鲁斯森林研究计划
- 批准号:
2409274 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
- 批准号:
2403883 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
- 批准号:
2425431 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Standard Grant