Analysis on Berkovich spaces and applications
Berkovich空间分析及应用
基本信息
- 批准号:0600027
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-06-01 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0600027Matthew BakerThis proposal is concerned with further development of the theory of Berkovich spaces, together with arithmetic applications. In broad terms, the PI plans to do the following: (1) Develop a theory of Jacobians of metrized graphs, with applications to studying the relationship between a Berkovich analytic curve and its Jacobian; (2) generalize the PI's and Rumely's potential theory on the Berkovich projective line to higher dimensions; and (3) use the theory of Berkovich spaces to make new progress on some open problems in arithmetic dynamics. The methods to be employed in the proposed research involve a mixture of techniques from arithmetic geometry, analysis, topology, graph theory, and dynamical systems. In broad terms, the proposal aims to address a key unifying principle within number theory, the idea that all completions of a global field should be treated in a symmetric way. This has been a central theme in number theory for almost a hundred years, as illustrated for example by Chevalley's idelic formulation of class field theory and Tate's development of harmonic analysis on adeles.The main intellectual merit of this work is that it will lead to new developments in the theory of Berkovich spaces, an exciting subject which has already found applications to number theory (including the local Langlands correspondence), mathematical physics (e.g. mirror symmetry), and other diverse fields. This project will also show how Berkovich spaces can be applied to a variety of interesting questions related to dynamical systems. In addition, the PI will bring new ideas to the theory of metrized graphs. Metrized graphs, also known in the literature as metric or quantum graphs, have applications to a diverse array of fields, including physics, mathematical biology, and number theory. The broader impacts of the proposed work will include dissemination of research and expository papers, interaction with experts in different fields, and support for undergraduate, graduate, and postdoctoral research.
DMS-0600027Matthew Bakerthis提案与伯科维奇空间理论的进一步发展以及算术应用有关。 从广义上讲,PI计划执行以下操作:(1)开发一种Metrrized图的Jacobians理论,并在研究Berkovich分析曲线与其Jacobian之间的关系中应用; (2)将PI和Rum的潜在理论推广到伯科维奇投射线上,以更高的维度; (3)使用伯科维奇空间的理论在算术动力学中的一些开放问题上取得了新的进步。 在拟议的研究中要采用的方法涉及算术几何,分析,拓扑,图理论和动态系统的技术混合。 从广义上讲,该提案旨在解决数字理论中的关键统一原则,即应以对称方式对待全球领域的所有完成的想法。 近一百年来,这一直是数量理论的核心主题,例如,奇瓦利(Chevalley)对阶级田野理论的idelic表述和泰特(Tate)对adeles的谐波分析的发展。这项工作的主要知识优点是,它将导致伯克维奇(Berkovich)空间理论中的新发展,这是一个令人兴奋的主题,它已经对数字理论(包括lang langlands and norky e. norky symentions and the lang lang e. n angy symentions and the lang e e. necipry e。其他不同的领域。 该项目还将显示如何将伯科维奇的空间应用于与动态系统有关的各种有趣的问题。此外,PI将为Metrrized图理论带来新的想法。 Metrrized图(也在文献中也称为度量图或量子图)都在各种领域(包括物理学,数学生物学和数字理论)应用。 拟议工作的更广泛影响将包括分发研究和说明性论文,与不同领域的专家的互动以及对本科,研究生和博士后研究的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Baker其他文献
Molecules de recepteur du facteur de necrose tumorale a immunogenicite reduite
具有免疫原性还原的肿瘤坏死因子受体分子
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Matthew Baker;Koen Hellendoorn - 通讯作者:
Koen Hellendoorn
4.0 Å Cryo-EM Structure of the Mammalian Chaperonin: TRiC/CCT
- DOI:
10.1016/j.bpj.2009.12.1202 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Yao Cong;Matthew Baker;Joanita Jakana;David Woolford;Stefanie Reissmann;Steven J. Ludtke;Judith Frydman;Wah Chiu - 通讯作者:
Wah Chiu
PS210. The Potential for Ascorbic Acid Mediated Nephroprotection in an Animal Model of Contrast-Induced Nephropathy following Endovascular Aneurysm Repair
- DOI:
10.1016/j.jvs.2012.03.200 - 发表时间:
2012-06-01 - 期刊:
- 影响因子:
- 作者:
Katie E. Rollins;Ayesha Noorani;Lucie Janeckova;Meryl Griffiths;Matthew Baker;Jonathan Boyle - 通讯作者:
Jonathan Boyle
On a Theorem of Lafforgue
论拉福格定理
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:1
- 作者:
Matthew Baker;Oliver Lorscheid - 通讯作者:
Oliver Lorscheid
Cancer research and cancer patients: It feels better and it does you good
- DOI:
10.1016/j.ejso.2018.01.542 - 发表时间:
2018-03-01 - 期刊:
- 影响因子:
- 作者:
Richard Stephens;Matthew Baker;Carolyn Morris - 通讯作者:
Carolyn Morris
Matthew Baker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Baker', 18)}}的其他基金
The Algebra, Blueprinted Geometry, and Combinatorics of Matroids
拟阵的代数、蓝图几何和组合学
- 批准号:
2154224 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Berkovich Spaces, Tropical Geometry, Combinatorics, and Dynamics
伯科维奇空间、热带几何、组合学和动力学
- 批准号:
1502180 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms And Tools For Modeling Macromolecular Assemblies
合作研究:ABI 创新:大分子组装建模的算法和工具
- 批准号:
1356306 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
Berkovich Spaces, Tropical Geometry, and Arithmetic Dynamics
伯科维奇空间、热带几何和算术动力学
- 批准号:
1201473 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Continuing Grant
Connections Between Number Theory, Algebraic Geometry, and Combinatorics
数论、代数几何和组合数学之间的联系
- 批准号:
0901487 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Continuing Grant
III-CXT: Collaborative Research: Integrated Modeling of Biological Nanomachines
III-CXT:协作研究:生物纳米机器的集成建模
- 批准号:
0705474 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
Spectrometric and Spectroscopic Molecular Pathology and Diagnosis
光谱分析和光谱分子病理学与诊断
- 批准号:
EP/E039855/1 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Fellowship
相似国自然基金
代数动力系统及其应用
- 批准号:11301510
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mirror symmetry, Berkovich spaces and the Minimal Model Programme
镜像对称、伯科维奇空间和最小模型程序
- 批准号:
EP/S025839/1 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grant
Canonical Kahler metrics and Moduli spaces
规范卡勒度量和模空间
- 批准号:
18K13389 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Cohomology of real-valued differential forms on Berkovich analytic spaces
Berkovich 解析空间上实值微分形式的上同调
- 批准号:
387554191 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Fellowships
Berkovich Spaces, Tropical Geometry, Combinatorics, and Dynamics
伯科维奇空间、热带几何、组合学和动力学
- 批准号:
1502180 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
Berkovich Spaces, Tropical Geometry, and Arithmetic Dynamics
伯科维奇空间、热带几何和算术动力学
- 批准号:
1201473 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Continuing Grant