Berkovich Spaces, Tropical Geometry, and Arithmetic Dynamics

伯科维奇空间、热带几何和算术动力学

基本信息

  • 批准号:
    1201473
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-01 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

This proposal involves problems in a diverse array of topics including Berkovich spaces, tropical geometry, and complex dynamics. The primary intellectual merit of the proposal is that it will increase our understanding of each of these important areas of mathematics and unearth new relationships between them. The main unifying theme behind these problems is that our proposed strategies for solving them all involve potential theory, both in the classical and non-Archimedean setting. In recent years, a surprisingly robust non-Archimedean analog of classical complex potential theory has been developed by the PI and others. In addition, the PI has helped to develop a number of general techniques for comparing Berkovich analytifications and tropicalizations of algebraic varieties, showing that one can profitably view tropical geometry a `bridge' between Berkovich's theory of non-Archimedean analytic spaces and classical convex geometry. The PI proposes to develop new methods for constructing semistable models of curves via tropical geometry, to prove a non-Archimedean Berkovich space version of the Mumford-Neeman equidistribution theorem, to apply Berkovich's theory to the study of component groups of Neron models, and to explore arithmetic and geometric properties of post-critically finite rational maps within the moduli space of all rational maps.The classical subject of complex potential theory first arose in physics, where it was used to describe gravitational and electromagnetic interactions. It has subsequently found a wealth of applications to various areas of mathematical research, including complex analysis and complex dynamics (where it is used to study fractals such as the celebrated Mandelbrot set). Non-Archimedean analysis is a crucial part of modern number theory which first arose in the early twentieth century work of Kurt Hensel on the famous 'p-adic numbers'. In non-Archimedean potential theory, one replaces the classical complex ``Riemann sphere'' by a p-adic counterpart, called the Berkovich projective line, which was introduced by Vladimir Berkovich in the 1980's. Berkovich's theory has since become an important tool in modern number theory and algebraic geometry. Tropical geometry is a relatively new and active area of research with applications to many fields of mathematics. One can think of tropical geometry as a piecewise linear approximation of classical algebraic geometry in which an ``algebraic variety'' (which is, roughly speaking, the set of common solutions to a system of polynomial equations) is replaced by a polyhedral complex (thought of as the set of common solutions to a system of linear inequalities). Surprisingly -- and rather mysteriously -- the tropical approximation remembers much more information about the original variety than one might originally expect.
该提案涉及各种各样的主题中的问题,包括伯科维奇空间,热带几何形状和复杂的动态。 该提案的主要知识优势在于,它将增加我们对数学和发现它们之间的新关系中每个重要领域的理解。这些问题背后的主要统一主题是,我们提出的解决这些问题的策略都涉及在古典和非安置的环境中的潜在理论。 近年来,PI和其他人已经开发了一种令人惊讶的强大的经典复杂潜在理论的非一切集类似物。 此外,PI有助于开发许多代数品种的伯科维奇分析和热带化的一般技术,表明人们可以盈利地将热带几何形状视为伯科维奇的非架构分析空间和经典的互联网几何学之间的“桥梁”。 PI建议通过热带几何形状开发新方法,以证明蒙福德·塞曼等分定理的非架构的伯科维奇空间版本,将伯科维奇的理论应用于neron模型的组成部分的研究,并探索杂志的构成范围,以探索杂种的构成范围,以探索杂种的模型。地图。复杂潜在理论的经典主题首先出现在物理学中,用于描述引力和电磁相互作用。 随后,它在数学研究的各个领域中发现了大量应用,包括复杂的分析和复杂的动态(用于研究著名的Mandelbrot集)。 非一切现象分析是现代数字理论的关键部分,它在二十世纪初期的库尔特·汉塞尔(Kurt Hensel)作品首次出现,以著名的“ p-adic数字”。 在非架构的潜在理论中,一个人用P-ADIC对应物(称为Berkovich Projective Line)取代了古典复合体``Riemann Sphere'',该系列是由弗拉基米尔·伯科维奇(Vladimir Berkovich)在1980年代引入的。 此后,伯科维奇的理论已成为现代数字理论和代数几何形状的重要工具。 热带几何形状是一个相对较新的研究领域,并应用于许多数学领域。人们可以将热带几何形状视为经典代数几何形状的分段线性近似,其中``代数变体''(大概是在多面体综合体中,将一组通用的求解替换为lineal in eque of lineal eque eque eque eque eque eque eque eque eque eque equine of to lothemial方程系统的共同解决方案。 令人惊讶的是 - 而且很神秘 - 热带近似记得有关原始品种的信息,比人们最初预期的要多。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Baker其他文献

Molecules de recepteur du facteur de necrose tumorale a immunogenicite reduite
具有免疫原性还原的肿瘤坏死因子受体分子
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthew Baker;Koen Hellendoorn
  • 通讯作者:
    Koen Hellendoorn
PS210. The Potential for Ascorbic Acid Mediated Nephroprotection in an Animal Model of Contrast-Induced Nephropathy following Endovascular Aneurysm Repair
  • DOI:
    10.1016/j.jvs.2012.03.200
  • 发表时间:
    2012-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Katie E. Rollins;Ayesha Noorani;Lucie Janeckova;Meryl Griffiths;Matthew Baker;Jonathan Boyle
  • 通讯作者:
    Jonathan Boyle
4.0 Å Cryo-EM Structure of the Mammalian Chaperonin: TRiC/CCT
  • DOI:
    10.1016/j.bpj.2009.12.1202
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yao Cong;Matthew Baker;Joanita Jakana;David Woolford;Stefanie Reissmann;Steven J. Ludtke;Judith Frydman;Wah Chiu
  • 通讯作者:
    Wah Chiu
On a Theorem of Lafforgue
论拉福格定理
Cancer research and cancer patients: It feels better and it does you good
  • DOI:
    10.1016/j.ejso.2018.01.542
  • 发表时间:
    2018-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Richard Stephens;Matthew Baker;Carolyn Morris
  • 通讯作者:
    Carolyn Morris

Matthew Baker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Baker', 18)}}的其他基金

The Algebra, Blueprinted Geometry, and Combinatorics of Matroids
拟阵的代数、蓝图几何和组合学
  • 批准号:
    2154224
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Georgia Algebraic Geometry Symposium
乔治亚代数几何研讨会
  • 批准号:
    1902108
  • 财政年份:
    2019
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Berkovich Spaces, Tropical Geometry, Combinatorics, and Dynamics
伯科维奇空间、热带几何、组合学和动力学
  • 批准号:
    1502180
  • 财政年份:
    2015
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
p-adic Methods in Number Theory
数论中的 p-adic 方法
  • 批准号:
    1500868
  • 财政年份:
    2015
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Georgia Algebraic Geometry Symposium
乔治亚代数几何研讨会
  • 批准号:
    1529573
  • 财政年份:
    2015
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Collaborative Research: ABI Innovation: Algorithms And Tools For Modeling Macromolecular Assemblies
合作研究:ABI 创新:大分子组装建模的算法和工具
  • 批准号:
    1356306
  • 财政年份:
    2014
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Connections Between Number Theory, Algebraic Geometry, and Combinatorics
数论、代数几何和组合数学之间的联系
  • 批准号:
    0901487
  • 财政年份:
    2009
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
III-CXT: Collaborative Research: Integrated Modeling of Biological Nanomachines
III-CXT:协作研究:生物纳米机器的集成建模
  • 批准号:
    0705474
  • 财政年份:
    2007
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Spectrometric and Spectroscopic Molecular Pathology and Diagnosis
光谱分析和光谱分子病理学与诊断
  • 批准号:
    EP/E039855/1
  • 财政年份:
    2007
  • 资助金额:
    $ 36万
  • 项目类别:
    Fellowship
Analysis on Berkovich spaces and applications
Berkovich空间分析及应用
  • 批准号:
    0600027
  • 财政年份:
    2006
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant

相似国自然基金

亚热带小型海岛丘陵土壤的发生与空间分异及其土系建立的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
亚热带小型海岛丘陵土壤的发生与空间分异及其土系建立的研究
  • 批准号:
    42271047
  • 批准年份:
    2022
  • 资助金额:
    56.00 万元
  • 项目类别:
    面上项目
细根生产力、功能性状和空间分布对亚热带树种多样性变化的响应机制
  • 批准号:
    32101272
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
邻体效应介导的亚热带天然林空间结构与生产力关系研究
  • 批准号:
    32101520
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
细根生产力、功能性状和空间分布对亚热带树种多样性变化的响应机制
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Complex dynamics via tropical moduli spaces
通过热带模空间的复杂动力学
  • 批准号:
    EP/X026612/1
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Research Grant
Tropical Methods in the Study of Moduli Spaces of Families of Curves
研究曲线族模空间的热带方法
  • 批准号:
    2054135
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Tropical Methods for the Tautological Intersection Theory of the Moduli Spaces of Curves
曲线模空间同义反复交集理论的热带方法
  • 批准号:
    2100962
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Classes of tropical linear spaces
热带线性空间的类别
  • 批准号:
    2266425
  • 财政年份:
    2019
  • 资助金额:
    $ 36万
  • 项目类别:
    Studentship
Tropical Geometry and Moduli Spaces: Satellite Conference of the 2018 International Congress of Mathematicians (ICM)
热带几何与模空间:2018年国际数学家大会(ICM)卫星会议
  • 批准号:
    1760342
  • 财政年份:
    2018
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了