p-adic Methods in Number Theory

数论中的 p-adic 方法

基本信息

  • 批准号:
    1500868
  • 负责人:
  • 金额:
    $ 4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-05-01 至 2017-04-30
  • 项目状态:
    已结题

项目摘要

This award provides support for participation in the conference "p-adic Methods in Number Theory" held at the University of California, Berkeley on May 26-30, 2015. Since their conception by Kurt Hensel around 1900, p-adic numbers have played a central role in number theory; for example, they are used in a crucial way in the proof of Fermat's Last Theorem. To a number theorist, p-adic numbers are just as "real" -- and just as important -- as real numbers. Both are ways of "filling in the gaps" left by considering just rational numbers. In their book "Number Theory I: Fermat's Dream," Kato, Kurokawa, and Saito write poetically, "In the long history of mathematics a number meant a real number, and it is only relatively recently that we realized that there is a world of p-adic numbers. It is as if those who had seen the sky only during the day are marveling at the night sky. [ ] Just as we can see space objects better at night, we begin to see the profound mathematical universe through the p-adic numbers." This conference will bring together experts in the many different facets of p-adic numbers and their applications, will promote a cross-fertilization of ideas between number theorists of all stripes, will expose graduate students and postdocs to state-of-the-art techniques and results, and will promote participation by underrepresented minorities and women in high-level number theory research. A conference on p-adic methods in number theory is timely and important, as many spectacular recent number-theoretic advances have made use of deep p-adic methods. We mention, for example, recent work establishing special cases of the p-adic local Langlands correspondence; the proof that most hyperelliptic curves of odd degree have just one rational point; developments on non-abelian Coleman integration and integral points on curves; work on the fundamental curve of p-adic Hodge theory; and recent results on perfectoid spaces. More Information can be found at https://sites.google.com/site/padicmethods2015/.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Baker其他文献

On a Theorem of Lafforgue
论拉福格定理
Molecules de recepteur du facteur de necrose tumorale a immunogenicite reduite
具有免疫原性还原的肿瘤坏死因子受体分子
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthew Baker;Koen Hellendoorn
  • 通讯作者:
    Koen Hellendoorn
Performance comparison of refrigerators integrated with superhydrophobic and superhydrophilic freezer evaporators
集成超疏水和超亲水冷冻蒸发器的冰箱性能比较
  • DOI:
    10.1063/5.0157647
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Dalia Ghaddar;K. Boyina;Kaushik Chettiar;M. J. Hoque;Matthew Baker;Pushkar Bhalerao;Scot Reagen;N. Miljkovic
  • 通讯作者:
    N. Miljkovic
Self-healing Model Predictive Controlled Cascaded Multilevel Inverter
自愈模型预测控制级联多电平逆变器
On Design Challenges of Portable Nuclear Magnetic Resonance System
便携式核磁共振系统的设计挑战
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mohsen Hosseinzadehtaher;Silvanus D'silva;Matthew Baker;Ritesh Kumar;Nathan Hein;Mohammad B. Shadmand;S.V. Krishna Jagadish;Behzad Ghanbarian
  • 通讯作者:
    Behzad Ghanbarian

Matthew Baker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Baker', 18)}}的其他基金

The Algebra, Blueprinted Geometry, and Combinatorics of Matroids
拟阵的代数、蓝图几何和组合学
  • 批准号:
    2154224
  • 财政年份:
    2022
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Georgia Algebraic Geometry Symposium
乔治亚代数几何研讨会
  • 批准号:
    1902108
  • 财政年份:
    2019
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
Berkovich Spaces, Tropical Geometry, Combinatorics, and Dynamics
伯科维奇空间、热带几何、组合学和动力学
  • 批准号:
    1502180
  • 财政年份:
    2015
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Georgia Algebraic Geometry Symposium
乔治亚代数几何研讨会
  • 批准号:
    1529573
  • 财政年份:
    2015
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
Collaborative Research: ABI Innovation: Algorithms And Tools For Modeling Macromolecular Assemblies
合作研究:ABI 创新:大分子组装建模的算法和工具
  • 批准号:
    1356306
  • 财政年份:
    2014
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Berkovich Spaces, Tropical Geometry, and Arithmetic Dynamics
伯科维奇空间、热带几何和算术动力学
  • 批准号:
    1201473
  • 财政年份:
    2012
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
Connections Between Number Theory, Algebraic Geometry, and Combinatorics
数论、代数几何和组合数学之间的联系
  • 批准号:
    0901487
  • 财政年份:
    2009
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
III-CXT: Collaborative Research: Integrated Modeling of Biological Nanomachines
III-CXT:协作研究:生物纳米机器的集成建模
  • 批准号:
    0705474
  • 财政年份:
    2007
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Spectrometric and Spectroscopic Molecular Pathology and Diagnosis
光谱分析和光谱分子病理学与诊断
  • 批准号:
    EP/E039855/1
  • 财政年份:
    2007
  • 资助金额:
    $ 4万
  • 项目类别:
    Fellowship
Analysis on Berkovich spaces and applications
Berkovich空间分析及应用
  • 批准号:
    0600027
  • 财政年份:
    2006
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant

相似国自然基金

数字孪生场景语义视觉变量智能优选与自动编排组合方法
  • 批准号:
    42361072
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
群体染色体数字孪生的生成方法及应用研究
  • 批准号:
    32370670
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于数字孪生的露头尺度无人机断裂识别、分析与追索智能模型构建方法研究
  • 批准号:
    42302336
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
应用于辐射探测的低噪声、高精度、多通路时间甄别及数字化专用集成电路设计方法研究
  • 批准号:
    12375191
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于儿童图形化编程的数字创造力评价与干预方法研究
  • 批准号:
    62307007
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Functional characterization of schizophrenia rare variants using genetically engineered human iPSCs
使用基因工程人类 iPSC 进行精神分裂症罕见变异的功能表征
  • 批准号:
    10554598
  • 财政年份:
    2023
  • 资助金额:
    $ 4万
  • 项目类别:
The Genetics of Personalized Functional MRI Networks
个性化功能 MRI 网络的遗传学
  • 批准号:
    10650032
  • 财政年份:
    2023
  • 资助金额:
    $ 4万
  • 项目类别:
Identifying structural variants influencing human health in population cohorts
识别影响人群健康的结构变异
  • 批准号:
    10889519
  • 财政年份:
    2023
  • 资助金额:
    $ 4万
  • 项目类别:
Effect of APP copy number variants in Alzheimer's disease and and Down Syndrome on Reelin expression and function
阿尔茨海默病和唐氏综合症中 APP 拷贝数变异对 Reelin 表达和功能的影响
  • 批准号:
    10760161
  • 财政年份:
    2023
  • 资助金额:
    $ 4万
  • 项目类别:
Cell cycle timing and molecular mechanisms of structural variant formation following incomplete replication
不完全复制后结构变异形成的细胞周期时间和分子机制
  • 批准号:
    10656861
  • 财政年份:
    2023
  • 资助金额:
    $ 4万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了