p-adic Methods in Number Theory
数论中的 p-adic 方法
基本信息
- 批准号:1500868
- 负责人:
- 金额:$ 4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-01 至 2017-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award provides support for participation in the conference "p-adic Methods in Number Theory" held at the University of California, Berkeley on May 26-30, 2015. Since their conception by Kurt Hensel around 1900, p-adic numbers have played a central role in number theory; for example, they are used in a crucial way in the proof of Fermat's Last Theorem. To a number theorist, p-adic numbers are just as "real" -- and just as important -- as real numbers. Both are ways of "filling in the gaps" left by considering just rational numbers. In their book "Number Theory I: Fermat's Dream," Kato, Kurokawa, and Saito write poetically, "In the long history of mathematics a number meant a real number, and it is only relatively recently that we realized that there is a world of p-adic numbers. It is as if those who had seen the sky only during the day are marveling at the night sky. [ ] Just as we can see space objects better at night, we begin to see the profound mathematical universe through the p-adic numbers." This conference will bring together experts in the many different facets of p-adic numbers and their applications, will promote a cross-fertilization of ideas between number theorists of all stripes, will expose graduate students and postdocs to state-of-the-art techniques and results, and will promote participation by underrepresented minorities and women in high-level number theory research. A conference on p-adic methods in number theory is timely and important, as many spectacular recent number-theoretic advances have made use of deep p-adic methods. We mention, for example, recent work establishing special cases of the p-adic local Langlands correspondence; the proof that most hyperelliptic curves of odd degree have just one rational point; developments on non-abelian Coleman integration and integral points on curves; work on the fundamental curve of p-adic Hodge theory; and recent results on perfectoid spaces. More Information can be found at https://sites.google.com/site/padicmethods2015/.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Baker其他文献
On a Theorem of Lafforgue
论拉福格定理
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:1
- 作者:
Matthew Baker;Oliver Lorscheid - 通讯作者:
Oliver Lorscheid
Molecules de recepteur du facteur de necrose tumorale a immunogenicite reduite
具有免疫原性还原的肿瘤坏死因子受体分子
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Matthew Baker;Koen Hellendoorn - 通讯作者:
Koen Hellendoorn
Performance comparison of refrigerators integrated with superhydrophobic and superhydrophilic freezer evaporators
集成超疏水和超亲水冷冻蒸发器的冰箱性能比较
- DOI:
10.1063/5.0157647 - 发表时间:
2023 - 期刊:
- 影响因子:4
- 作者:
Dalia Ghaddar;K. Boyina;Kaushik Chettiar;M. J. Hoque;Matthew Baker;Pushkar Bhalerao;Scot Reagen;N. Miljkovic - 通讯作者:
N. Miljkovic
Self-healing Model Predictive Controlled Cascaded Multilevel Inverter
自愈模型预测控制级联多电平逆变器
- DOI:
10.1109/ecce.2019.8913011 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Mitchell Easley;Matthew Baker;Ahmad Khan;M. Shadmand;H. Abu - 通讯作者:
H. Abu
On Design Challenges of Portable Nuclear Magnetic Resonance System
便携式核磁共振系统的设计挑战
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Mohsen Hosseinzadehtaher;Silvanus D'silva;Matthew Baker;Ritesh Kumar;Nathan Hein;Mohammad B. Shadmand;S.V. Krishna Jagadish;Behzad Ghanbarian - 通讯作者:
Behzad Ghanbarian
Matthew Baker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Baker', 18)}}的其他基金
The Algebra, Blueprinted Geometry, and Combinatorics of Matroids
拟阵的代数、蓝图几何和组合学
- 批准号:
2154224 - 财政年份:2022
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Berkovich Spaces, Tropical Geometry, Combinatorics, and Dynamics
伯科维奇空间、热带几何、组合学和动力学
- 批准号:
1502180 - 财政年份:2015
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms And Tools For Modeling Macromolecular Assemblies
合作研究:ABI 创新:大分子组装建模的算法和工具
- 批准号:
1356306 - 财政年份:2014
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Berkovich Spaces, Tropical Geometry, and Arithmetic Dynamics
伯科维奇空间、热带几何和算术动力学
- 批准号:
1201473 - 财政年份:2012
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Connections Between Number Theory, Algebraic Geometry, and Combinatorics
数论、代数几何和组合数学之间的联系
- 批准号:
0901487 - 财政年份:2009
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
III-CXT: Collaborative Research: Integrated Modeling of Biological Nanomachines
III-CXT:协作研究:生物纳米机器的集成建模
- 批准号:
0705474 - 财政年份:2007
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Spectrometric and Spectroscopic Molecular Pathology and Diagnosis
光谱分析和光谱分子病理学与诊断
- 批准号:
EP/E039855/1 - 财政年份:2007
- 资助金额:
$ 4万 - 项目类别:
Fellowship
Analysis on Berkovich spaces and applications
Berkovich空间分析及应用
- 批准号:
0600027 - 财政年份:2006
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
相似国自然基金
数字孪生场景语义视觉变量智能优选与自动编排组合方法
- 批准号:42361072
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
群体染色体数字孪生的生成方法及应用研究
- 批准号:32370670
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于数字孪生的露头尺度无人机断裂识别、分析与追索智能模型构建方法研究
- 批准号:42302336
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
应用于辐射探测的低噪声、高精度、多通路时间甄别及数字化专用集成电路设计方法研究
- 批准号:12375191
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于儿童图形化编程的数字创造力评价与干预方法研究
- 批准号:62307007
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Functional characterization of schizophrenia rare variants using genetically engineered human iPSCs
使用基因工程人类 iPSC 进行精神分裂症罕见变异的功能表征
- 批准号:
10554598 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
The Genetics of Personalized Functional MRI Networks
个性化功能 MRI 网络的遗传学
- 批准号:
10650032 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Identifying structural variants influencing human health in population cohorts
识别影响人群健康的结构变异
- 批准号:
10889519 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Effect of APP copy number variants in Alzheimer's disease and and Down Syndrome on Reelin expression and function
阿尔茨海默病和唐氏综合症中 APP 拷贝数变异对 Reelin 表达和功能的影响
- 批准号:
10760161 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Cell cycle timing and molecular mechanisms of structural variant formation following incomplete replication
不完全复制后结构变异形成的细胞周期时间和分子机制
- 批准号:
10656861 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别: