Cohomology of real-valued differential forms on Berkovich analytic spaces

Berkovich 解析空间上实值微分形式的上同调

基本信息

  • 批准号:
    387554191
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Fellowships
  • 财政年份:
    2017
  • 资助国家:
    德国
  • 起止时间:
    2016-12-31 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

In algebraic geometry one studies the geometry of the set of solutions of a family of polynomial equations. One method to study integral solutions of such systems of equations is Arakelov theory. It was Arakelov's great insight that to study these solutions, it is very helpful to combine algebraic geometry at the prime numbers, often called finite places, with analytic geometry over the complex numbers. It has always been the hope in Arakelov theory that one can use analytic geometry also at finite places. In particular, one needs a notion of real-valued differential forms at such a finite place. In the 1990s, Berkovich introduced suitable analytic spaces, called Berkovich analytic spaces. In 2012 Chambert-Loir and Ducros introduced smooth real-valued differential forms on Berkovich analytic spaces. Chambert-Loir and Ducros, Gubler and Künnemann as well as Liu showed first results in applying these differential forms in Arakelov theory. My own previous results include a Poincaré lemma for these differential forms, which was crucially used in Liu’s work. Further, in joint work with V. Wanner, we showed that the cohomology with respect to smooth real-valued differential forms of Mumford curves satisfies Poincaré duality and used this to completely calculate that cohomology for Mumford curves. The goal of my research project is to study these smooth real-valued differential forms in a general context and prove results about their cohomology, which are analogous to the results over the complex numbers. In particular, I want to prove that the cohomology of curves satisfies Poincaré duality. Poincaré duality is one of the basic properties of smooth differential forms over the complex numbers. It is both useful in theoretical applications as well as in concrete calculations of the cohomology. Since the definition of smooth-real valued differential forms uses tropical geometry and previous work shows direct relations to invariants in tropical geometry, studying questions in tropical geometry will also be part of the project. In said previous work, which was joint work with K. Shaw and J. Smacka, we further showed that smooth tropical varieties satisfy Poincaré duality. I want to show that more tropical spaces than currently known satisfy Poincaré duality. Also I want to prove that certain tropical spaces, and in particular smooth projective tropical varieties, satisfy symmetry in Hodge numbers.
在代数的几何形状中在有限的地方。在Chambert-Loir和Ducros,Gubler和Kunnemann上,在Arakelov理论中,这些差异形式也是如此。 -Mumford Curves的差异形式满足庞加莱二元性,并用它来完全计算我的研究项目的同时研究。我想在当前的曲线中,当前的曲线是基本属性的基本属性的曲线。在热带几何形状中显示与热带几何形状的直接关系,这也将是上述工作中的项目。 Spacesfysatiscaré二元性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Philipp Jell其他文献

Dr. Philipp Jell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

协同无人机与背包激光雷达的阔叶林真实叶面积指数反演
  • 批准号:
    42371382
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
面向真实监控场景的多源行人搜索技术研究
  • 批准号:
    62372348
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向真实场景的多视图子空间聚类方法研究
  • 批准号:
    62306006
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向真实应用场景的Wi-Fi后向散射通信关键技术研究
  • 批准号:
    62372374
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向真实世界的交互式终身学习行人重识别研究
  • 批准号:
    62371208
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

PROACTIVE - Optimizing real-world interventions for older adults: Community-tailored implementation of person-valued interventions through continual evaluation
积极主动 - 优化老年人的现实干预措施:通过持续评估,针对社区量身定制个人价值的干预措施
  • 批准号:
    459802
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Multi-Valued Neuro-Fuzzy Classifier for Extracting Rules from Real-World Data
用于从现实世界数据中提取规则的多值神经模糊分类器
  • 批准号:
    15K00333
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Real-valued self-similar Markov processes and their applications
实值自相似马尔可夫过程及其应用
  • 批准号:
    EP/L002442/1
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Real-valued evolutionary algorithms for constrained problems
约束问题的实值进化算法
  • 批准号:
    353637-2007
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
User-Identification Position-Sensing Asynchronous CDMA Communication System Using Finite-Length PN-Sequences
使用有限长度 PN 序列的用户识别位置传感异步 CDMA 通信系统
  • 批准号:
    18560378
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了