CAREER: Spin and Spin Coherence Dynamics in One- Dimensional Semiconductor Nanostructures

职业:一维半导体纳米结构中的自旋和自旋相干动力学

基本信息

  • 批准号:
    0547194
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-05-01 至 2011-04-30
  • 项目状态:
    已结题

项目摘要

Non-Technical Abstract:This Faculty Career project experimentally explores unique and novel spin dependent phenomena in one dimension (1D). This is a fascinating new research direction in the field of Spintronics that represents a new paradigm of electronics and utilizes electron spin rather than charge for device functionality. There are many exotic new spin- related fundamental physics in 1D condensed matter semiconductor systems due to their unusual structural and electronic properties, such as spin-charge separation. To achieve these, chemically synthesized Group II-VI and III-V 1D semiconductor nanostructures with tunable structural and physical properties will be applied as 1D model systems. The state-of-the-art ultrafast optical spin resonance techniques will be employed to investigate the spatial and temporal evolutions of spin dynamics in as-synthesized 1D nanostructures. From the practical point of view, 1D condensed matter systems represent the smallest dimension structures that can be used for efficient information transport based on the spin degree of freedom. Ultimately, results from this project will be critical to the function and integration of NanoSpintronic technology and lead to the advance in quantum information processing and quantum computation. An important component of this project, in addition to direct training provided to graduated students, is the integration of research with undergraduate education program. This will involve developing a new undergraduate course, aiming at exposing motivated undergraduate students to independent research in nanoscience early in their college careers and serving as a platform to transform their knowledge learnt from traditional course to research experience. This course will also fill the need for research opportunities for undergraduates in the recently initiated Interdisciplinary Minor Program in Nanoscale Science and Technology in the University of Maryland. Technical Abstract:The object of this Faculty Career project is to develop fundamental experimentally based understanding of spin and spin coherence dynamics in one-dimensional (1D) condensed matter semiconductor systems with all-optical far-field and near-field spin resonance techniques. Many exotic new spin- related physics have been predicted for real 1D semiconductor systems due to their unique spin-spin and spin-charge interactions as well as spin couplings with their dissipate environment. In this project chemically synthesized Group II-VI and III-V 1D semiconductor nanostructures with controllable structural and physical properties will be applied as 1D model systems and combined with all optical spin resonance techniques to probe spin dynamics within nanostructures. Several fundamental issues will be focused on, including spin coherence lifetimes, electron and exciton Lande g-factors, intrinsic spin relaxation mechanisms, dimensionality and anisotropic effects, 1D spin diffusion and spin coherence transport, coherent light-matter-spin interactions within 1D nanostructures and spin condensate process in 1D nanocavity. 1D condensed matter systems also represent the smallest dimension structures that can be used for efficient information transport based on the spin degree of freedom. Ultimately, these studies will be critical to the function and integration of NanoSpintronic technology. An important component of this project, in addition to direct training provided to graduated students, is the integration of research with undergraduate education program. This will involve developing a new undergraduate course, aiming at exposing motivated undergraduate students to independent research in nanophysics and nanomaterial sciences early in their college careers and serving as a platform to transform their knowledge learnt from traditional course to research experience.
非技术摘要:这个教师职业项目在实验中探索了一个维度(1D)的独特而新颖的旋转现象。这是Spintronics领域中一个引人入胜的新研究方向,它代表了电子的新范式,并利用电子自旋而不是电荷来用于设备功能。由于其异常的结构和电子特性,例如自旋荷兰分离,因此在一维凝结物质半导体系统中有许多异国情调的新自旋相关的基本物理。为了实现这些目标,具有可调结构和物理性能的化学合成II-VI组和III-V 1D半导体纳米结构将被用作1D模型系统。将采用最先进的超快光旋转谐振技术来研究AS合成的1D纳米结构中自旋动力学的空间和时间演变。从实际的角度来看,一维冷凝物系统代表了最小的维度结构,可根据自由度自由度用于有效的信息传输。最终,该项目的结果将对纳米融合技术的功能和集成至关重要,并导致量子信息处理和量子计算的进步。除了向毕业生提供的直接培训外,该项目的重要组成部分是将研究与本科教育计划的整合。这将涉及开发一门新的本科课程,旨在使积极进取的本科生在大学职业生涯的早期对纳米科学的独立研究,并作为将知识从传统课程转变为研究经验的平台。 本课程还将满足新近开始的跨学科次要次要计划在马里兰州大学的跨学科次要计划中的研究机会。技术摘要:该教师职业项目的目的是在一维(1D)凝结物质半导体系统中对具有实验性的旋转和旋转相干动态的基本理解,具有具有全光场和近场旋转共振技术。由于它们独特的自旋旋转和自旋荷兰相互作用以及与散发性环境的自旋耦合,因此已经预测了许多新型新型自旋相关的物理学。在该项目中,具有可控的结构和物理性能的II-VI组和III-V 1D组纳米结构将作为1D模型系统应用,并与所有光学自旋共振技术相结合,以探测纳米结构内的自旋动力学。几个基本问​​题将重点关注,包括旋转相干寿命,电子和激子Lande G-Faintor,固有的自旋松弛机制,尺寸和各向异性效应,1D旋转扩散和旋转相干性传输,一致的一致的轻型 - 旋转 - 在1D纳米结构中的光 - 旋转相互作用以及1D纳米结构中的旋转冷凝水和1D nananananananananananananananananananaCavity。一维冷凝物系统还代表了最小的尺寸结构,可用于根据自由度自由度的有效信息传输。最终,这些研究将对纳米纺丝技术的功能和整合至关重要。除了向毕业生提供的直接培训外,该项目的重要组成部分是将研究与本科教育计划的整合。这将涉及开发一门新的本科课程,旨在使积极进取的本科生在大学职业生涯的早期对纳米物理学和纳米材料科学的独立研究,并作为将知识从传统课程转变为研究经验的平台。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Min Ouyang其他文献

The power load’s signal analysis and short-term prediction based on wavelet decomposition
基于小波分解的电力负荷信号分析与短期预测
  • DOI:
    10.1007/s10586-017-1316-3
  • 发表时间:
    2017-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huan Wang;Min Ouyang;Zhibing Wang;Ruishi Liang;Xin Zhou
  • 通讯作者:
    Xin Zhou
Vulnerability effects of passengers' intermodal transfer distance preference and subway expansion on complementary urban public transportation systems
乘客多式联运换乘距离偏好及地铁扩建对城市公共交通互补系统的脆弱性影响
TASEH: A haloscope axion search experiment
TASEH:光环轴子搜索实验
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hsin Chang;Jing;Yi Chang;Yu;Yuan;Chien;Ching;Kuan;Yung;W. Chiang;Wei;Hien Thi Doan;W. Hung;W. Kuo;Shou;Han Liu;Min Ouyang;Ping;Shin
  • 通讯作者:
    Shin
Vulnerability assessment and mitigation for the Chinese railway system under floods
洪水下中国铁路系统的脆弱性评估和缓解
  • DOI:
    10.1016/j.ress.2014.12.013
  • 发表时间:
    2015-05
  • 期刊:
  • 影响因子:
    8.1
  • 作者:
    Min Ouyang;Srinivas Peeta;Xiaozheng He;Yongze Yan
  • 通讯作者:
    Yongze Yan
Transparency windows of the plasmonic nanostructure composed of C-shaped and U-shaped resonators
由C形和U形谐振器组成的等离子体纳米结构的透明窗口
  • DOI:
    10.1016/j.optcom.2016.10.021
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Xin Zhou;Min Ouyang;Bin Tang;Zhibing Wang;Jun He
  • 通讯作者:
    Jun He

Min Ouyang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Min Ouyang', 18)}}的其他基金

Engineering Phonons in Hybrid Nanostructures by Design and Understanding Their Roles in A Few Physical Processes
通过设计和了解声子在一些物理过程中的作用来工程混合纳米结构中的声子
  • 批准号:
    1608720
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Understanding A Few Nanoscale Light-Matter-Spin Interactions by Combining Ultrafast Optical Spectroscopy and Colloidal Quantum Functional Materials
通过结合超快光谱和胶体量子功能材料了解一些纳米级光-物质-自旋相互作用
  • 批准号:
    1307800
  • 财政年份:
    2013
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似国自然基金

旋转剪切作用下中煤级烟煤变形产气机理研究
  • 批准号:
    42302204
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
太阳风法拉第旋转成像计划
  • 批准号:
    42374197
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
煤层水动力柔性刀具旋转动力学特征及高效扩孔机制
  • 批准号:
    52374198
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
半刚性转子弹性对行波旋转超声电机输出性能影响机制的研究
  • 批准号:
    52365006
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于环形孔径旋转调制的时间编码成像方法研究
  • 批准号:
    12375307
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Robust Coherence and High Sensitivity in Metal-Ion Nuclear-Spin Qubits
职业:金属离子核自旋量子位的鲁棒相干性和高灵敏度
  • 批准号:
    2419717
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Quantum Coherence, Optical Readout, and Quantum Transduction for Spin Qubits from First-Principles Calculations
职业:基于第一原理计算的自旋量子位的量子相干性、光学读出和量子传导
  • 批准号:
    2342876
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Probing Quantum Coherence in Biomolecular Microenvironments via Electron Spin Molecular Quantum Sensors
职业:通过电子自旋分子量子传感器探测生物分子微环境中的量子相干性
  • 批准号:
    2236609
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Quantum Coherence, Optical Readout, and Quantum Transduction for Spin Qubits from First-Principles Calculations
职业:基于第一原理计算的自旋量子位的量子相干性、光学读出和量子传导
  • 批准号:
    2143233
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Robust Coherence and High Sensitivity in Metal-Ion Nuclear-Spin Qubits
职业:金属离子核自旋量子位的鲁棒相干性和高灵敏度
  • 批准号:
    2047325
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了