CAREER: Probing Quantum Coherence in Biomolecular Microenvironments via Electron Spin Molecular Quantum Sensors
职业:通过电子自旋分子量子传感器探测生物分子微环境中的量子相干性
基本信息
- 批准号:2236609
- 负责人:
- 金额:$ 69.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-15 至 2027-11-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The National Science Foundation’s Quantum Leap initiative seeks to promote understanding and application of quantum mechanics towards areas such as computation, modeling, communication, and sensing. Innovation in these areas will meet societal needs for technologies that include sensors with exquisite sensitivity and resolution. Towards these challenges, molecular Quantum Information Science (QIS) makes use of the fine tunability of synthetic chemistry to understand, design, and utilize new molecules and materials with measurable and controllable quantum properties. This research project aims to develop new molecular systems, models, and protocols for quantum sensing in biology towards the goal of enabling atomically-precise magnetic imaging. The molecular and biological sensors constructed through this project will be used to study chemical micro-environments in biological systems with high sensitivity and to understand quantum effects in biological systems and processes. In turn, this research utilizes a reciprocal relationship that will not only develop quantum sensors for biological applications but will also improve understanding of quantum processes needed for future applications of molecular QIS in technological devices. Through an educational component to this project, open educational resources will be developed to amplify the impact of this work by expanding and simplifying access to chemical education and research. These resources will alleviate cost barriers that limit understanding of the quantum paradigm and success in STEM. Additionally, a new research training program will bedeveloped to provide chemistry techniques to students in a neighboring community college, enabling historically underrepresented students with little to no research experience to continue in STEM careers.Current research in molecular Quantum Information Science (QIS) seeks to develop quantum-enabled technologies for computation, communication, and sensing through chemical synthesis and spectroscopic characterization. This project combines QIS and biophysics to fundamentally understand intramolecular and intermolecular effects on decoherence dynamics and to quantify changes in decoherence times for probing biochemical micro-environments. The goal of this research is the development of molecular quantum sensors for biology towards atomically-precise magnetic resonance imaging using electron spin decoherence. This project contains four objectives: 1) the development of theoretical/experimental descriptions of decoherence-based quantum sensing mechanisms, 2) the investigation of decoherence properties of molecular quantum sensor (qusor)-labeled membranes, 3) the elucidation of secondary sphere contributions to decoherence in paramagnetic metalloprotein active sites, and 4) the selective targeting of protein-specific qusor binding. First, theoretical models for spin-lattice and spin-spin relaxation times will be developed for organic molecules and low-symmetry transition metal complexes, then expanded to computations for macromolecular systems. Second, paramagnetic organic molecules will be introduced into lipid assemblies for studying micellar morphologies and interfaces with ultrafast spectroscopy at room temperature. Third, the decoherence dynamics of paramagnetic metalloproteins and their mutants will be probed to quantify the maximum distance for secondary sphere effects and to improve the accuracy of computational methods. Fourth, molecular qusor-protein complexes will be synthesized and assembled to demonstrate decoherence effects for sensing site-specific binding events. Techniques to be employed for this project include chemical synthesis, protein expression and purification, X-ray crystallography, optical and magnetic spectroscopies, and theoretical and computational methods.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
国家科学基金会的《量子飞跃计划》旨在促进对量子力学的理解和应用,以在计算,建模,沟通和敏感性等领域。这些领域的创新将满足包括具有独家灵敏度和解决方案的传感器的技术需求。在这些挑战方面,分子量子信息科学(QIS)利用合成化学的微可线性可用来理解,设计和利用具有可测量和受控量子特性的新分子和材料。该研究项目旨在开发新的分子系统,模型和方案,以实现生物学中的量子灵敏度,以实现原子磁成像。通过该项目构建的分子和生物传感器将用于研究具有高灵敏度的生物学系统中的化学微环境,并了解生物系统和过程中的量子效应。反过来,这项研究采用了相互关系,不仅将开发用于生物学应用的量子传感器,而且还将提高对分子质量质量质量质量QI在技术设备中未来应用所需的量子过程的理解。通过对该项目的教育组成部分,将开发开放的教育资源,以扩大和简化获得化学教育和研究的访问,从而取得这项工作的影响。这些资源将减轻成本障碍,以限制对STEM中量子范式和成功的了解。此外,将制定一项新的研究培训计划,以向邻近社区学院的学生提供化学技术,从而使历史上的代表性不足的学生几乎没有研究经验,无法继续从事STEM职业。分子量子信息科学(QIS)的现成研究旨在通过计算,通信,交流,化学合成和光谱特征来开发量子能力的技术。该项目将QIS和生物物理学结合在一起,从根本上了解分子内和分子间对去谐解动力学的影响,并量化探测生化微环境的变质时间的变化。这项研究的目的是开发用于生物学的分子量子传感器使用电子旋转谐波来开发原子磁共振成像。 This project contains Four objectives: 1) the development of theoretical/experimental descriptions of decoherence-based quantum sensitivity mechanisms, 2) the investment of decoherence properties of molecular quantum sensor (qusor)-labeled mechanisms, 3) the elucidation of secondary sphere contributions to decoherence in paramagnetic metalloprotein active sites, and 4) the selective targeting of protein-specific Qusor结合。首先,将针对有机分子和低对称过渡金属复合物开发自旋晶格和自旋旋转弛豫时间的理论模型,然后扩展到大分子系统的计算。其次,顺磁性有机分子将被引入脂质组件中,以在室温下研究胶束形态和界面。第三,将探测顺磁性金属蛋白及其突变体的分流动力学,以量化次级球体效应的最大距离并提高计算方法的准确性。第四,将合成并组装分子Qusor-蛋白质复合物,以证明对敏感性特异性结合事件的脱谐作用。该项目要执行的技术包括化学合成,蛋白质表达和纯化,X射线晶体学,光学和磁光谱以及理论和计算方法。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响评估标准来评估值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ryan Hadt其他文献
Ryan Hadt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于可调制长周期外场诱导的强关联系统中量子态的探测与操纵研究
- 批准号:12305026
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
量子化声表面波对原子分子的操控及探测
- 批准号:12374483
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
星用光量子通信高性能单光子探测器的空间辐射损伤效应机理研究
- 批准号:12305320
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于超导量子比特的微波光声量子态的制备与探测
- 批准号:
- 批准年份:2023
- 资助金额:290 万元
- 项目类别:
无毒胶体III-V量子点的开发及其红外探测器应用
- 批准号:62304191
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Probing Quantum Matter using Programmable Quantum Simulators
职业:使用可编程量子模拟器探测量子物质
- 批准号:
2237244 - 财政年份:2023
- 资助金额:
$ 69.27万 - 项目类别:
Continuing Grant
CAREER: Quantum spin liquids meet spintronics: Theory of probing quantum spin liquids with spin Hall effects
职业:量子自旋液体遇到自旋电子学:利用自旋霍尔效应探测量子自旋液体的理论
- 批准号:
2238135 - 财政年份:2023
- 资助金额:
$ 69.27万 - 项目类别:
Continuing Grant
CAREER: Probing Quantum Materials Modified by Terahertz Quantum Fluctuations
职业:探测太赫兹量子涨落改变的量子材料
- 批准号:
2240106 - 财政年份:2023
- 资助金额:
$ 69.27万 - 项目类别:
Continuing Grant
Probing the cardioprotective effects of sulfane sulfurs with next generation fluorescent sensors
使用下一代荧光传感器探讨硫烷硫的心脏保护作用
- 批准号:
10749202 - 财政年份:2023
- 资助金额:
$ 69.27万 - 项目类别:
CAREER: Probing and Braiding Chiral Majorana Fermions in Quantum Anomalous Hall Insulator-Superconductor Hybrid Structures
职业:探测和编织量子反常霍尔绝缘体-超导混合结构中的手性马约拉纳费米子
- 批准号:
1847811 - 财政年份:2019
- 资助金额:
$ 69.27万 - 项目类别:
Continuing Grant