Understanding A Few Nanoscale Light-Matter-Spin Interactions by Combining Ultrafast Optical Spectroscopy and Colloidal Quantum Functional Materials
通过结合超快光谱和胶体量子功能材料了解一些纳米级光-物质-自旋相互作用
基本信息
- 批准号:1307800
- 负责人:
- 金额:$ 39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-06-01 至 2016-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
****Technical Abstract****This award supports an experimental research program to understand emerging light-matter-spin involving processes within pre-designed zero-dimensional colloidal quantum structures by ultrafast optical spectroscopy. This research plan will directly involve graduate students training in tools and techniques needed to address a few fundamental issues: control of resonant plasmon-exciton interactions; realization of ultrafast spin control and echo in colloidal quantum structures by spin-plasmon and spin-phonon interactions; and development of new class of colloidal quantum magneto-semiconductor devices. Accomplishment of this project should advance our fundamental understanding and materials engineering of light assisted spin-dependent phenomena at the nanoscale. This work is additionally important because zero-dimensional quantum structures represent the smallest dimensional units that can be used for quantum information processing based on the spin degree of freedom. In addition to student training, this award will also allow to integrate cutting-edge research activities with undergraduate education program, K-12 outreach, classroom demonstration and teacher training.****Non-Technical Abstract****This award supports experimental research to understand and control various fundamental interactions that are of relevance to the spin of electron at the nanometer scale. Spin is an intrinsic quantum mechanical property of electron that can potentially lead to new technology and device development. Time-resolved spectroscopy that can provide extremely high temporal resolution with ultrashort light pulses will be applied to launch, probe and manipulate nanoscale spin-dependent processes. This will include application of ultrashort light pulse to create coupling of spin in semiconductor with plasmon (that is a collective motion of electrons in metal nanostructures) and phonon (that is atomic lattice collective motion in a solid), to manipulate spin of semiconductor quantum structures in a very fast time scale, and to discover novel interactions between spins of nanoscale magnets and semiconductors. This project will be accomplished by employing multidisciplinary experimental tools, including chemical synthesis of quantum structures, ultrafast optical spectroscopy and nano-device engineering, and thus provide a fertile ground for students' training, K-12 outreach and curriculum development.
****技术摘要****该奖项支持一个实验研究计划,以了解通过超快光谱法中预先设计的零维胶体量子结构中涉及过程的新出现的旋转旋转。该研究计划将直接涉及研究生培训,以解决一些基本问题所需的工具和技术:控制谐振等离子体互动的互动;通过自旋播种和自旋形成相互作用实现胶体量子结构中超快自旋控制和回波;以及新的一类胶体量子磁磁性导体设备的开发。该项目的完成应提高我们对纳米级的光辅助旋转依赖现象的基本理解和材料工程。这项工作也很重要,因为零维量子结构代表最小的维单元,可根据自由度自由度用于量子信息处理。除了学生培训外,该奖项还将允许将尖端的研究活动与本科教育计划,K-12外展,课堂演示和教师培训相结合。自旋是电子的固有量子机械性能,可能会导致新的技术和设备开发。可以使用超短光脉冲提供极高的时间分辨率的时间分辨光谱将用于发射,探测和操纵纳米级旋转依赖性过程。 This will include application of ultrashort light pulse to create coupling of spin in semiconductor with plasmon (that is a collective motion of electrons in metal nanostructures) and phonon (that is atomic lattice collective motion in a solid), to manipulate spin of semiconductor quantum structures in a very fast time scale, and to discover novel interactions between spins of nanoscale magnets and semiconductors.该项目将通过采用多学科实验工具来完成,包括量子结构的化学合成,超快的光谱和纳米设备工程,从而为学生的培训,K-12外展和课程开发提供肥沃的地面。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Min Ouyang其他文献
The power load’s signal analysis and short-term prediction based on wavelet decomposition
基于小波分解的电力负荷信号分析与短期预测
- DOI:
10.1007/s10586-017-1316-3 - 发表时间:
2017-11 - 期刊:
- 影响因子:0
- 作者:
Huan Wang;Min Ouyang;Zhibing Wang;Ruishi Liang;Xin Zhou - 通讯作者:
Xin Zhou
Vulnerability effects of passengers' intermodal transfer distance preference and subway expansion on complementary urban public transportation systems
乘客多式联运换乘距离偏好及地铁扩建对城市公共交通互补系统的脆弱性影响
- DOI:
10.1016/j.ress.2016.10.001 - 发表时间:
2017-02 - 期刊:
- 影响因子:8.1
- 作者:
Yongze Yan;Min Ouyang;Hui Tian;Xiaozheng He - 通讯作者:
Xiaozheng He
TASEH: A haloscope axion search experiment
TASEH:光环轴子搜索实验
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Hsin Chang;Jing;Yi Chang;Yu;Yuan;Chien;Ching;Kuan;Yung;W. Chiang;Wei;Hien Thi Doan;W. Hung;W. Kuo;Shou;Han Liu;Min Ouyang;Ping;Shin - 通讯作者:
Shin
Vulnerability assessment and mitigation for the Chinese railway system under floods
洪水下中国铁路系统的脆弱性评估和缓解
- DOI:
10.1016/j.ress.2014.12.013 - 发表时间:
2015-05 - 期刊:
- 影响因子:8.1
- 作者:
Min Ouyang;Srinivas Peeta;Xiaozheng He;Yongze Yan - 通讯作者:
Yongze Yan
Transparency windows of the plasmonic nanostructure composed of C-shaped and U-shaped resonators
由C形和U形谐振器组成的等离子体纳米结构的透明窗口
- DOI:
10.1016/j.optcom.2016.10.021 - 发表时间:
2017 - 期刊:
- 影响因子:2.4
- 作者:
Xin Zhou;Min Ouyang;Bin Tang;Zhibing Wang;Jun He - 通讯作者:
Jun He
Min Ouyang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Min Ouyang', 18)}}的其他基金
Engineering Phonons in Hybrid Nanostructures by Design and Understanding Their Roles in A Few Physical Processes
通过设计和了解声子在一些物理过程中的作用来工程混合纳米结构中的声子
- 批准号:
1608720 - 财政年份:2016
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
CAREER: Spin and Spin Coherence Dynamics in One- Dimensional Semiconductor Nanostructures
职业:一维半导体纳米结构中的自旋和自旋相干动力学
- 批准号:
0547194 - 财政年份:2006
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: Inverse Task Planning from Few-Shot Vision Language Demonstrations
协作研究:基于少镜头视觉语言演示的逆向任务规划
- 批准号:
2327974 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Collaborative Research: Inverse Task Planning from Few-Shot Vision Language Demonstrations
协作研究:基于少镜头视觉语言演示的逆向任务规划
- 批准号:
2327973 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
- 批准号:
2313131 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
III: SMALL: Graph Contrastive Learning for Few-Shot Node Classification
III:SMALL:少样本节点分类的图对比学习
- 批准号:
2229461 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
From a jack-of-all-trades arise masters of few: uncovering the evolutionary patterns and processes driving multigene family functional diversification
从多才多艺的人中脱颖而出:揭示驱动多基因家族功能多样化的进化模式和过程
- 批准号:
2325341 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Standard Grant