Coupled Thermal and Mechanical Behavior of Conducting Polymer Nanostructures
导电聚合物纳米结构的热力学耦合行为
基本信息
- 批准号:0438389
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-05-01 至 2009-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTNational Science FoundationProposal Number: CTS-0438389Principal Investigator: Abramson, Alexis RAffiliation: Case Western Reserve UniversityProposal Title: Coupled Thermal and Mechanical Behavior of Conducting Polymer NanostructuresConducting polymer nanostructures have gained attention by the nanoelectronics community because of their high electrical conductivity, mechanical flexibility and potential for low-cost manufacturing. Moreover, the properties of these nanosized polymer structures make them interesting candidates for additional applications such as for membrane materials, tissue scaffolding, sensing, and in composite materials. Improved characterization of coupled thermal and mechanical response of these nanostructures is expected to lead to a better understanding of the novel phenomena at the nanoscale that is essential to the nanoelectronics industry as well as for current and future applications. In view of the lack of understanding of the coupling between mechanical strain and thermal transport in conducting polymer nanostructures and the scientific and technological importance of the successful implementation of these materials to society, a collaborative three year multidisciplinary research effort comprising specialists in polymer processing/nanofabrication, transport properties at the nanoscale, and experimental nanomechanics is being proposed. The research will integrate three major ingredients, i.e. synthesis and nanofabrication, experimentation and modeling. The proposed research will focus on the behavior of thermal and mechanical properties (both coupled and uncoupled) of conducting polymer nanostructures as a function of temperature. Polyaniline nanostructures with different shape, size, morphology, and porosity will be investigated. The polymer nanostructures will be nanofabricated using a wet electropolymerization process. The design and development of a novel testing device will enable coupled mechanical and thermal measurements of the polyaniline nanostructures. This nano-tensilometer device is based on a novel modification to the commercially available Hysitron triboindenter and will be combined with specialized thermal probes. The device will be used inside a high resolution scanning electron microscope (SEM) with in-situ nanomanipulators. An electron-beam induced deposition (EBID) procedure will be employed to "nanoweld" the nanostructures to the probe tips or micro-device. A theoretical analysis will be utilized to complement experimental results and enable an improved understanding. It is emphasized that the proposed research program is innovative and novel and entails considerable nanofabrication, experimental and modeling challenges. It represents a major departure from the conventional and current techniques employed by the energy transport and experimental mechanics communities to investigate coupled thermal/mechanical behavior in micro- and/or nanoscale structures.A strong learning and teaching component, integral to the research objectives, will provide for significant educational enhancement for both undergraduate and graduate students and will provide for outreach opportunities for K-12 students. These students will greatly benefit from the inherently multidisciplinary nature of this project. Furthermore, they will have the opportunity for laboratory experience on and/or exposure to state-of-the-art modern instrumentation and cutting-edge research. In addition to the involvement of graduate students through their own research projects, CWRU strongly encourages the involvement of undergraduate students in faculty research projects through senior projects and/or laboratory courses. All involved students will be encouraged to participate in national conferences. Attention will also be paid towards the recruitment of underrepresented minority students. Furthermore, the PIs will contribute significant content from this research to the "Nanopedia," an extensive multi-faceted web-based learning approach to nanotechnology curriculum currently under development at CWRU. This resource will be available to university level and K-12 students as well as the general public.
摘要美国国家科学基金会提案编号:CTS-0438389 首席研究员:Abramson, Alexis 所属单位:凯斯西储大学提案标题:导电聚合物纳米结构的耦合热与机械行为导电聚合物纳米结构因其高导电性、机械灵活性和潜力而受到纳米电子学界的关注用于低成本制造。此外,这些纳米级聚合物结构的特性使其成为其他应用的有趣候选者,例如膜材料、组织支架、传感和复合材料。这些纳米结构耦合热和机械响应的表征的改进预计将有助于更好地理解纳米尺度的新现象,这对于纳米电子行业以及当前和未来的应用至关重要。鉴于对传导聚合物纳米结构中机械应变和热传输之间的耦合以及成功实施这些材料对社会的科学和技术重要性缺乏了解,一项由聚合物加工/纳米制造专家组成的为期三年的多学科合作研究工作、纳米尺度的传输特性和实验纳米力学正在被提出。该研究将整合三个主要成分,即合成和纳米制造、实验和建模。拟议的研究将重点关注导电聚合物纳米结构的热性能和机械性能(耦合和非耦合)随温度的变化。将研究具有不同形状、尺寸、形态和孔隙率的聚苯胺纳米结构。聚合物纳米结构将使用湿法电聚合工艺进行纳米制造。新型测试装置的设计和开发将使聚苯胺纳米结构的机械和热耦合测量成为可能。这种纳米张力计装置基于对市售 Hysitron 三面压痕仪的新颖改进,并将与专用热探针相结合。该设备将在带有原位纳米操纵器的高分辨率扫描电子显微镜(SEM)内使用。将采用电子束诱导沉积(EBID)程序将纳米结构“纳米焊接”到探针尖端或微型器件上。将利用理论分析来补充实验结果并加深理解。需要强调的是,拟议的研究计划具有创新性和新颖性,并且需要大量的纳米制造、实验和建模挑战。它代表了与能量传输和实验力学界所采用的传统和当前技术的重大背离,用于研究微米和/或纳米级结构中的耦合热/机械行为。强大的学习和教学部分是研究目标的组成部分,将为本科生和研究生提供显着的教育提升,并将为 K-12 学生提供外展机会。这些学生将从该项目固有的多学科性质中受益匪浅。此外,他们将有机会获得实验室经验和/或接触最先进的现代仪器和尖端研究。除了研究生通过自己的研究项目参与之外,CWRU 还强烈鼓励本科生通过高级项目和/或实验室课程参与教师研究项目。将鼓励所有参与的学生参加全国会议。还将关注招收代表性不足的少数族裔学生。此外,PI 还将向“Nanopedia”贡献这项研究的重要内容,“Nanopedia”是 CWRU 目前正在开发的一种基于网络的广泛的纳米技术课程学习方法。该资源将向大学和 K-12 学生以及公众开放。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexis Abramson其他文献
Alexis Abramson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexis Abramson', 18)}}的其他基金
Active Thermal Switching of Smart Composite Materials
智能复合材料的主动热开关
- 批准号:
1605354 - 财政年份:2016
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
An Innovative Microfabricated Ionic Wind Pump Array for Thermal Management Applications
用于热管理应用的创新微制造离子风泵阵列
- 批准号:
1067159 - 财政年份:2011
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
CAREER: Novel Conducting Polymer Nanocomposites with Tailored Thermal and Electrical Properties - Designing High Performance Thermoelectric Materials
职业:具有定制热性能和电性能的新型导电聚合物纳米复合材料 - 设计高性能热电材料
- 批准号:
0448881 - 财政年份:2005
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
NUE: Nanoworlds: An Innovative Undergraduate Curriculum Using a Scalable Web-Based Encyclopedia of Nanotechnology
NUE:Nanoworlds:使用可扩展的基于网络的纳米技术百科全书的创新本科课程
- 批准号:
0407208 - 财政年份:2004
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
SGER: Thermoelectrics in Nature: Electrochemical and Thermal Measurements of Extracellular Shark Gel
SGER:自然界中的热电学:鲨鱼细胞外凝胶的电化学和热测量
- 批准号:
0425106 - 财政年份:2004
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
相似国自然基金
基于分形维数的热端部件变频变幅热-机械耦合加载下疲劳损伤演变机理研究
- 批准号:
- 批准年份:2020
- 资助金额:35 万元
- 项目类别:
基于电化学-热-机械多物理场耦合模型的大型锂离子电池结构多目标优化设计方法研究
- 批准号:21978166
- 批准年份:2019
- 资助金额:65 万元
- 项目类别:面上项目
水热耦合机械预处理木质纤维吸附纤维素酶行为及调控机制的研究
- 批准号:31770634
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
锂离子电池机械损伤的多尺度力-电化学-热耦合数值仿真模拟研究
- 批准号:51706187
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
碳陶摩擦材料制动盘在热-机械耦合环境下的疲劳行为及损伤演变机理
- 批准号:51575536
- 批准年份:2015
- 资助金额:63.0 万元
- 项目类别:面上项目
相似海外基金
Validation of Neuropilin-1 receptor signaling in nociceptive processing
伤害感受处理中 Neuropilin-1 受体信号传导的验证
- 批准号:
10774563 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Targeting the neuropilin-1 receptor (NRP-1)/VEGF-A axis for neuropathic pain
靶向神经毡蛋白-1 受体 (NRP-1)/VEGF-A 轴治疗神经性疼痛
- 批准号:
10321851 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
A Female Specific Role of RGSz1 in Modulation of Chronic Pain
RGSz1 在调节慢性疼痛中的女性特异性作用
- 批准号:
10441146 - 财政年份:2020
- 资助金额:
$ 35万 - 项目类别:
A Female Specific Role of RGSz1 in Modulation of Chronic Pain
RGSz1 在调节慢性疼痛中的女性特异性作用
- 批准号:
9981335 - 财政年份:2020
- 资助金额:
$ 35万 - 项目类别:
Comprehensive Phenotyping of Specific Populations of Spinal Neurons Processing Cutaneous Information Before and After Injury
损伤前后处理皮肤信息的脊髓神经元特定群体的综合表型
- 批准号:
10707980 - 财政年份:2016
- 资助金额:
$ 35万 - 项目类别: