An Innovative Microfabricated Ionic Wind Pump Array for Thermal Management Applications

用于热管理应用的创新微制造离子风泵阵列

基本信息

  • 批准号:
    1067159
  • 负责人:
  • 金额:
    $ 20.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-01 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

PIs: Norman C. Tien, Alexis R. Abramson Proposal #: 1067159As microelectronics components continue to be miniaturized, power density is increasing substantially, and considerations for novel thermal management solutions are becoming critical. New technologies such as the proposed microfabricated ionic wind pump must offer a superior solution that meets industry requirements for heat removal effectiveness and is silent, contains no moving parts, and boasts a low weight and volume. In response to this need, the objective of this research is to model, design, fabricate and test an innovative, microfabricated ionic wind pump that ultimately outperforms a conventional CPU muffin fan. The ionic wind pump device works by applying a sufficiently high voltage between emitting and collecting electrodes, which causes nearby air molecules to be propelled from emitter to collector due to the presence of a high electric field, resulting in convective cooling. Methods and approaches employed for this work include: computational multiphysics modeling for device design optimization, particle image velocimetry for flow visualization, device microfabrication (including growth of carbon nanotubes as emitter tips) and device testing. The expected outcome of this work will be the development of an innovative ionic wind pump device that either alone or in conjunction with a thermal spreader, demonstrates enhanced heat removal capabilities as compared with conventional technologies. This "active heat sink" device will meet various industry requirements and will have the potential to replace existing cooling fan technologies used in laptops and other portable devices, making them more reliable, of smaller form factors and quieter.The intellectual merit of this proposal includes the systematic modeling, design, fabrication and testing of an ionic wind pump device, which will lead to the advancement of knowledge and understanding in the fields of electrohydrodynamics, thermal transport, fluid mechanics and microfabrication. Some preliminary data for this work has been collected including initial computational modeling, microfabrication of first generation test structures, flow visualization and experimental validation of the cooling phenomenon. This investigation is transformative because we are investigating at the intersection of electrohydrodynamics and thermal transport, wherein lies the potential for a unique and commercializable thermal management solution. The proposed program will leverage the respective strengths of the investigators, utilizing proven techniques available in the PI's laboratories and at multi-user facilities at CWRU.The broader impact of this proposal includes advancing the discovery and development of an innovative, microfabricated thermal management device to enable future progress in the high-speed electronics industry. All levels of students will be involved in this research project: at least one Ph.D. student, one Masters student, four undergraduate students and various high school students will be introduced to real-world problems associated with this work. A two week lesson on microfabrication/MEMS in Dr. Abramson's "Introduction to Nanotechnology" course will be developed. To promote high school participation, an exciting teaching module on the topic of thermal management will be tested at local high schools and publicly disseminated. Results from research will be further disseminated via conference presentations, journal papers and web site publication to enhance scientific and technological understanding.
PI:Norman C. Tien、Alexis R. Abramson 提案编号:1067159随着微电子元件不断小型化,功率密度大幅增加,对新型热管理解决方案的考虑变得至关重要。新技术(例如拟议的微型离子风泵)必须提供卓越的解决方案,满足行业对散热效率的要求,并且安静、不包含移动部件、重量轻、体积小。为了满足这一需求,本研究的目标是建模、设计、制造和测试一种创新的微制造离子风泵,其性能最终优于传统的 CPU 松饼风扇。离子风泵装置的工作原理是在发射电极和收集电极之间施加足够高的电压,由于高电场的存在,导致附近的空气分子从发射极被推进到收集极,从而产生对流冷却。这项工作采用的方法和途径包括:用于设备设计优化的计算多物理场建模、用于流动可视化的粒子图像测速、设备微加工(包括作为发射器尖端的碳纳米管的生长)和设备测试。这项工作的预期成果将是开发一种创新的离子风泵装置,无论是单独使用还是与散热器结合使用,与传统技术相比,该装置都具有增强的散热能力。这种“主动散热器”设备将满足各种行业要求,并将有可能取代笔记本电脑和其他便携式设备中使用的现有冷却风扇技术,使它们更可靠、外形更小且更安静。该提案的智力优点包括离子风泵装置的系统建模、设计、制造和测试,这将促进电流体动力学、热传输、流体力学和微加工领域的知识和理解的进步。这项工作的一些初步数据已经收集,包括初始计算模型、第一代测试结构的微加工、流动可视化和冷却现象的实验验证。这项研究具有变革性,因为我们正在研究电流体动力学和热传输的交叉点,其中蕴藏着独特且可商业化的热管理解决方案的潜力。拟议的计划将利用研究人员各自的优势,利用 PI 实验室和 CWRU 多用户设施中可用的成熟技术。该提案的更广泛影响包括推进创新型微制造热管理设备的发现和开发,以实现推动高速电子行业的未来进步。所有级别的学生都将参与该研究项目:至少一名博士生。学生、一名硕士生、四名本科生和多名高中生将了解与这项工作相关的现实问题。 Abramson 博士的“纳米技术导论”课程将开设为期两周的微加工/MEMS 课程。为了促进高中的参与,一个关于热管理主题的令人兴奋的教学模块将在当地高中进行测试并公开传播。研究结果将通过会议演讲、期刊论文和网站出版进一步传播,以增进科学和技术理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexis Abramson其他文献

Alexis Abramson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexis Abramson', 18)}}的其他基金

Active Thermal Switching of Smart Composite Materials
智能复合材料的主动热开关
  • 批准号:
    1605354
  • 财政年份:
    2016
  • 资助金额:
    $ 20.12万
  • 项目类别:
    Standard Grant
CAREER: Novel Conducting Polymer Nanocomposites with Tailored Thermal and Electrical Properties - Designing High Performance Thermoelectric Materials
职业:具有定制热性能和电性能的新型导电聚合物纳米复合材料 - 设计高性能热电材料
  • 批准号:
    0448881
  • 财政年份:
    2005
  • 资助金额:
    $ 20.12万
  • 项目类别:
    Standard Grant
Coupled Thermal and Mechanical Behavior of Conducting Polymer Nanostructures
导电聚合物纳米结构的热力学耦合行为
  • 批准号:
    0438389
  • 财政年份:
    2005
  • 资助金额:
    $ 20.12万
  • 项目类别:
    Continuing Grant
NUE: Nanoworlds: An Innovative Undergraduate Curriculum Using a Scalable Web-Based Encyclopedia of Nanotechnology
NUE:Nanoworlds:使用可扩展的基于网络的纳米技术百科全书的创新本科课程
  • 批准号:
    0407208
  • 财政年份:
    2004
  • 资助金额:
    $ 20.12万
  • 项目类别:
    Standard Grant
SGER: Thermoelectrics in Nature: Electrochemical and Thermal Measurements of Extracellular Shark Gel
SGER:自然界中的热电学:鲨鱼细胞外凝胶的电化学和热测量
  • 批准号:
    0425106
  • 财政年份:
    2004
  • 资助金额:
    $ 20.12万
  • 项目类别:
    Standard Grant

相似国自然基金

基于金属腔中表面等离子激元共振效应的纳米孔阵列加工基础研究
  • 批准号:
    51805176
  • 批准年份:
    2018
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
微弧氧化中空化剥离机制及其硅表面平坦化设计
  • 批准号:
    51701153
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
微纳电极的聚焦离子束化学气相沉积制备及其超声辅助电解放电复合加工
  • 批准号:
    51605305
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
冷等离子体射流中的微细电火花加工机理与方法
  • 批准号:
    51475075
  • 批准年份:
    2014
  • 资助金额:
    83.0 万元
  • 项目类别:
    面上项目
双光子激发光生酸剂的设计、合成及其光学性质研究
  • 批准号:
    20902069
  • 批准年份:
    2009
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

EAGER: Quantum Manufacturing: 3D Microfabricated Ion Traps
EAGER:量子制造:3D 微制造离子阱
  • 批准号:
    2240291
  • 财政年份:
    2023
  • 资助金额:
    $ 20.12万
  • 项目类别:
    Standard Grant
Biocompatible Flexible Microfabricated Sensors for Surgical Applications
适用于外科应用的生物相容性柔性微加工传感器
  • 批准号:
    2321238
  • 财政年份:
    2023
  • 资助金额:
    $ 20.12万
  • 项目类别:
    Standard Grant
Microfabricated Ion-Cavity nodes for Robust, Optically-Networked Quantum Computing (MICRON-QC)
用于鲁棒光网络量子计算的微加工离子腔节点 (MICRON-QC)
  • 批准号:
    EP/Y026438/1
  • 财政年份:
    2023
  • 资助金额:
    $ 20.12万
  • 项目类别:
    Research Grant
Microfabricated bioactive hydrogel platform as in vitro models to understand the mechanobiology of cell-matrix interaction in human tissue
微制造的生物活性水凝胶平台作为体外模型来了解人体组织中细胞-基质相互作用的力学生物学
  • 批准号:
    RGPIN-2021-03200
  • 财政年份:
    2022
  • 资助金额:
    $ 20.12万
  • 项目类别:
    Discovery Grants Program - Individual
Wireless devices microfabricated in thick material layers
在厚材料层中微制造的无线设备
  • 批准号:
    RGPIN-2018-06318
  • 财政年份:
    2022
  • 资助金额:
    $ 20.12万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了