Genomic Basis of Specificity in Glucosinolate Hydrolysis

芥子油苷水解特异性的基因组基础

基本信息

  • 批准号:
    0323759
  • 负责人:
  • 金额:
    $ 28.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-09-01 至 2007-08-31
  • 项目状态:
    已结题

项目摘要

Plants produce a vast catalog of secondary metabolites, partly generated by diverse structural modifications of common backbone structures. Glucosinolates, low-molecular-weight, sulfur rich thioglucosides, are a prime example of how a single molecular backbone can be modified to produce an amazing array of secondary metabolites. A single species, Arabidopsis thaliana, can derive 30 different glucosinolates from the methionine glucosinolate backbone that can be amplified to over 100 different compounds during glucosinolate hydrolysis. The biological activity of a glucosinolate is fully realized after degradation by the protein, myrosinase. This produces a series of different compounds such as isothiocyanates, nitriles, and epithionitriles that differentially impact human health. In Arabidopsis, a relative of many brassica vegetables, numerous genetic loci determine the hydrolytic path of glucosinolates. One locus, ESM1, previously defined only in genetic terms, will be cloned and characterized at the molecular level. Further, the biochemical impact of ESM1 on glucosinolate hydrolysis will be investigated. Glucosinolate structural modifications serve to control diverse biological activities that help the plant defend itself from insects, nematodes, fungi as well as containing the potential to greatly benefit human nutrition when modified in common Brassica crops. A key point in controlling glucosinolate biological activity is at the hydrolysis step. This step controls the production of compounds with dramatic differences in biological activity. For example, a given glucosinolate's isothiocyanate exhibits stronger cancer prevention activities and anti-insect/fungal activities than do the corresponding nitriles. Characterizing the Arabidopsis glucosinolate hydrolytic system could impact fields ranging from ecology to evolution to human nutrition. Additionally, the ESM1 locus may be useful in producing crops with altered insect and pathogen resistance as well as altered nutritional value for human consumption. Further, involving undergraduates and postdoctoral researchers in this project will expose them to a broad range of techniques and help to train them for their own future research.
植物产生大量的次生代谢物,部分是由常见主链结构的不同结构修饰产生的。芥子油苷是一种低分子量、富含硫的硫代葡萄糖苷,是如何修饰单分子主链以产生一系列令人惊叹的次级代谢产物的典型例子。单一物种拟南芥可以从甲硫氨酸芥子油苷主链衍生出 30 种不同的芥子油苷,这些芥子油苷在水解过程中可以扩增为 100 多种不同的化合物。芥子油苷的生物活性在被蛋白质黑芥子酶降解后完全实现。这会产生一系列不同的化合物,如异硫氰酸酯、腈和环硫腈,对人类健康产生不同的影响。在拟南芥(许多芸苔属蔬菜的近亲)中,许多遗传位点决定芥子油苷的水解路径。一个基因座 ESM1 以前仅在遗传学术语中定义,现在将在分子水平上进行克隆和表征。此外,还将研究 ESM1 对芥子油苷水解的生化影响。 芥子油苷结构修饰有助于控制多种生物活性,帮助植物防御昆虫、线虫、真菌的侵害,并且在普通芸苔属作物中进行修饰后,具有极大有益于人类营养的潜力。控制芥子油苷生物活性的关键点是水解步骤。此步骤控制生物活性显着差异的化合物的产生。例如,给定的芥子油苷的异硫氰酸酯比相应的腈表现出更强的癌症预防活性和抗昆虫/真菌活性。拟南芥芥子油苷水解系统的表征可能会影响从生态学到进化到人类营养等各个领域。此外,ESM1基因座可用于生产具有改变的昆虫和病原体抗性以及改变的人类食用营养价值的作物。此外,让本科生和博士后研究人员参与该项目将使他们接触到广泛的技术,并有助于为他们自己未来的研究进行培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Kliebenstein其他文献

Daniel Kliebenstein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Kliebenstein', 18)}}的其他基金

Research PGR: Co-transcriptome networks to identify conserved and lineage specific plant resistance against a generalist pathogen
研究 PGR:共转录组网络,用于识别保守的和谱系特异性的植物对通用病原体的抗性
  • 批准号:
    2020754
  • 财政年份:
    2020
  • 资助金额:
    $ 28.92万
  • 项目类别:
    Continuing Grant
Empirical testing of how changing regulatory module membership affects module function within central metabolism
改变调节模块成员资格如何影响中央代谢内模块功能的实证检验
  • 批准号:
    1906486
  • 财政年份:
    2019
  • 资助金额:
    $ 28.92万
  • 项目类别:
    Standard Grant
Evolution and Domestication of Core Eudicot Defense Mechanisms against a Common Generalist Pathogen
针对常见通用病原体的核心双子叶植物防御机制的进化和驯化
  • 批准号:
    1339125
  • 财政年份:
    2014
  • 资助金额:
    $ 28.92万
  • 项目类别:
    Standard Grant
Modular Transcriptional Coordination of Central Metabolism
中枢代谢的模块化转录协调
  • 批准号:
    1330337
  • 财政年份:
    2013
  • 资助金额:
    $ 28.92万
  • 项目类别:
    Continuing Grant
Arabidopsis 2010: Simultaneous Genome Wide Association Mapping in Plant Host and Pathogen
拟南芥 2010:植物宿主和病原体的同步全基因组关联作图
  • 批准号:
    1021861
  • 财政年份:
    2010
  • 资助金额:
    $ 28.92万
  • 项目类别:
    Continuing Grant
The Generation of Complex Epistasis by Metabolic Networks
代谢网络产生复杂的上位性
  • 批准号:
    0820580
  • 财政年份:
    2008
  • 资助金额:
    $ 28.92万
  • 项目类别:
    Standard Grant
SGER: Connecting the Transcriptome and Metabolome with Natural Genetic Variation.
SGER:将转录组和代谢组与自然遗传变异联系起来。
  • 批准号:
    0642481
  • 财政年份:
    2006
  • 资助金额:
    $ 28.92万
  • 项目类别:
    Standard Grant
Dissertation Research: The Genetic Architecture of Glucosinolate Breakdown Specificity
论文研究:芥子油苷分解特异性的遗传结构
  • 批准号:
    0608516
  • 财政年份:
    2006
  • 资助金额:
    $ 28.92万
  • 项目类别:
    Standard Grant

相似国自然基金

乙肝病毒特异性受体NTCP的抗原识别结构基础和别构抑制剂筛选
  • 批准号:
    32301001
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
双原子纳米酶仿生设计与前列腺特异性抗原免疫分析应用基础研究
  • 批准号:
    22304096
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
方斑东风螺性别特异性标记筛选与性别决定分子基础研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肺部吸入树突状细胞仿生mRNA疫苗激发呼吸道粘膜和特异性免疫的基础理论和关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
麦芽低聚糖生成酶产物特异性的结构基础与定向调控研究
  • 批准号:
    32272263
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

Validation of Diffusion Basis Spectrum Imaging of Neuroinflammation in Schizophrenia
精神分裂症神经炎症扩散基谱成像的验证
  • 批准号:
    10573475
  • 财政年份:
    2022
  • 资助金额:
    $ 28.92万
  • 项目类别:
Determing the genetic basis of responses to biomechanical strain in an in vitro model of osteoarthritis
确定骨关节炎体外模型中生物力学应变反应的遗传基础
  • 批准号:
    10538602
  • 财政年份:
    2021
  • 资助金额:
    $ 28.92万
  • 项目类别:
Determing the genetic basis of responses to biomechanical strain in an in vitro model of osteoarthritis
确定骨关节炎体外模型中生物力学应变反应的遗传基础
  • 批准号:
    10156429
  • 财政年份:
    2021
  • 资助金额:
    $ 28.92万
  • 项目类别:
Determing the genetic basis of responses to biomechanical strain in an in vitro model of osteoarthritis
确定骨关节炎体外模型中生物力学应变反应的遗传基础
  • 批准号:
    10348171
  • 财政年份:
    2021
  • 资助金额:
    $ 28.92万
  • 项目类别:
The genomic basis of host specificity and niche adaptation of Pseudomonas syringae on Prunus
李属丁香假单胞菌寄主特异性和生态位适应的基因组基础
  • 批准号:
    BB/P005705/2
  • 财政年份:
    2020
  • 资助金额:
    $ 28.92万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了