A Stochastic Differential Equation Approach to Studying Landslide Failure and Size Distributions

研究滑坡破坏和规模分布的随机微分方程方法

基本信息

  • 批准号:
    0229846
  • 负责人:
  • 金额:
    $ 21.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-05-15 至 2006-04-30
  • 项目状态:
    已结题

项目摘要

A major unsolved problem in geomorphology is this: when a slope begins to fail, how big will the ensuing landslide be? The span of possible landslide sizes is enormous, with potential failures ranging in scale from meters to kilometers - so it's unfortunate, particularly for hazard assessment, that we remain unable to predict such sizes. This inability persists despite the fact that we now have rather good constraints on the size-frequency distribution of landslides at a regional scale. This project takes a new theoretical tack, one that involves the use of stochastic differential equations, to address in concert the issues of individual landslide propagation and ensemble landslide sizedistribution. We have found that a simple, stochastic calculus model for slope failure can explain the full size-frequency distribution of landslides, including the mean landslide size and both the power-law scaling and non-scaling components of the distribution. We are developing this theory in order to address the following key questions: (1) how does the mean landslide size in an ensemble distribution relate to reality? - if it is not an artifact of mapping resolution, does it relate to physical properties such as soil depth, cohesion, and lithology, or is it simply a function of mean hillslope scale? (2) are the physical assumptions of the stochastic theory borne out by field observations? (3) can we be more precise in our data analysis and modeling of different slope failure mechanisms? (4) do rockfalls occur by an entirely different stochastic process with an altogether different size-frequency distribution? The outcome of our efforts will be a deeper understanding of the stochastic behavior of hillslope failure and landslide hazard.
地貌学中一个尚未解决的主要问题是:当斜坡开始塌陷时,随之而来的滑坡会有多大? 可能发生的滑坡规模范围巨大,潜在的滑坡规模从米到公里不等,因此不幸的是,特别是对于灾害评估而言,我们仍然无法预测此类规模。尽管我们现在对区域范围内滑坡的规模频率分布有相当好的限制,但这种无能仍然存在。该项目采用了一种新的理论策略,涉及使用随机微分方程,以协调解决个体滑坡传播和整体滑坡规模分布的问题。 我们发现,一个简单的边坡失稳随机微积分模型可以解释滑坡的完整尺寸频率分布,包括平均滑坡尺寸以及分布的幂律缩放和非缩放分量。 我们正在发展这一理论,以解决以下关键问题:(1)集合分布中的平均滑坡规模与现实有何关系? - 如果它不是测绘分辨率的伪影,它是否与土壤深度、粘聚力和岩性等物理特性有关,或者它只是平均山坡比例的函数? (2) 随机理论的物理假设是否被现场观察所证实? (3)我们能否更精确地对不同边坡破坏机制进行数据分析和建模? (4) 落石是否是通过具有完全不同的尺寸频率分布的完全不同的随机过程发生的? 我们努力的结果将是对山坡破坏和滑坡灾害的随机行为有更深入的了解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Colin Stark其他文献

Colin Stark的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Colin Stark', 18)}}的其他基金

Collaborative Research: The 2015 Taan Fiord landslide tsunami: An interdisciplinary study of cause & effect
合作研究:2015 年塔安峡湾山体滑坡海啸:原因的跨学科研究
  • 批准号:
    1639643
  • 财政年份:
    2016
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Standard Grant
EarthCube Building Blocks: Collaborative Proposal: A Geo-Semantic Framework for Integrating Long-Tail Data and Models
EarthCube 构建模块:协作提案:集成长尾数据和模型的地理语义框架
  • 批准号:
    1440229
  • 财政年份:
    2014
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Standard Grant
Hazards SEES Type 1: Predicting Landslide Runout and Granular Flow Hazard: Enhanced-g Centrifuge Experiments, Contact Dynamics Model Development and Theoretical Study
灾害 SEES 类型 1:预测滑坡跳动和颗粒流灾害:增强型离心机实验、接触动力学模型开发和理论研究
  • 批准号:
    1331499
  • 财政年份:
    2013
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Standard Grant
Collaborative Research: Unlocking The Seismic Signature Of Rivers
合作研究:解锁河流的地震特征
  • 批准号:
    1148176
  • 财政年份:
    2012
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Standard Grant
Collaborative Research: A field, laboratory and theoretical study of mixed bedrock-alluvial meandering rivers
合作研究:混合基岩冲积曲流河的现场、实验室和理论研究
  • 批准号:
    1124114
  • 财政年份:
    2011
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Standard Grant
EAGER: Catastrophic landslide dynamics from seismic wave inversion and satellite remote sensing
EAGER:地震波反演和卫星遥感的灾难性滑坡动力学
  • 批准号:
    1150072
  • 财政年份:
    2011
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Standard Grant
Collaborative Research: Climatological, Vegetational, and Human-Related Controls on Channelization and Shallow Landsliding Quantified Through Objective Analysis of LiDAR Data
合作研究:通过激光雷达数据的客观分析量化渠道化和浅层滑坡的气候、植被和人类相关控制
  • 批准号:
    1063231
  • 财政年份:
    2011
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Standard Grant
Collaborative Research: Geomorphic transport laws, landscape evolution, and fractional calculus
合作研究:地貌传输定律、景观演化和分数阶微积分
  • 批准号:
    0823953
  • 财政年份:
    2008
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Standard Grant
An Exploration of the Role of Mountain River Sinuosity in Landscape Dynamics
山地河流蜿蜒度在景观动力学中的作用探讨
  • 批准号:
    0617557
  • 财政年份:
    2006
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Standard Grant
Monitoring Mountain Rivers From Space: A Pilot Study of Bedrock River Flow Measurement Using Ultra-High Resolution Optical Satellite Imagery
从太空监测山区河流:利用超高分辨率光学卫星图像进行基岩河流量测量的试点研究
  • 批准号:
    0550087
  • 财政年份:
    2005
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Standard Grant

相似国自然基金

奇异系数下的随机微分方程解的适定性及相关性质
  • 批准号:
    12361030
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
非全局Lipschitz条件下时滞随机微分方程数值方法的研究
  • 批准号:
    12301521
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
α-稳定过程驱动的随机微分方程的极限行为研究
  • 批准号:
    12301175
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
带奇异系数的多尺度随机(偏)微分方程的渐近行为研究
  • 批准号:
    12301179
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
反射型耦合正倒向随机微分方程及其控制问题
  • 批准号:
    12371443
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

Macroscopic properties of discrete stochastic models and analysis of their scaling limits
离散随机模型的宏观性质及其标度极限分析
  • 批准号:
    23KK0050
  • 财政年份:
    2023
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Learn Systems Biology Equations From Snapshot Single Cell Genomic Data
从快照单细胞基因组数据学习系统生物学方程
  • 批准号:
    10736507
  • 财政年份:
    2023
  • 资助金额:
    $ 21.42万
  • 项目类别:
Growth and termination of earthquakes revealed by a stochastic source model
随机源模型揭示地震的增长和终止
  • 批准号:
    22K03782
  • 财政年份:
    2022
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of stochastic chaos in nonlinear stochastic differential equations and its applications
非线性随机微分方程中的随机混沌分析及其应用
  • 批准号:
    21H01002
  • 财政年份:
    2021
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Speech Processing Based on Deep Gaussian Process With Stochastic Differential Equation Layers
基于随机微分方程层深度高斯过程的语音处理
  • 批准号:
    21K11955
  • 财政年份:
    2021
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了