Discrete Solitons: Methods, Theory and Applications

离散孤子:方法、理论和应用

基本信息

  • 批准号:
    0204585
  • 负责人:
  • 金额:
    $ 12.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-08-01 至 2006-07-31
  • 项目状态:
    已结题

项目摘要

The aim of this proposal is to use a number of mathematical tools and techniques (Hamiltonian normal forms, variational analysis, exponential asymptotics, integrability methods, multiscale techniques, homogenization and Evans function methods among others), in conjunction with numerical methods (continuation and bifurcation theory tools, Newton type methods together with numerical linear stability analysis and direct time integration) to systematically explore nonlinear waves in discrete systems. In particular, we plan to address the following aspects of the behavior, dynamics and stability of the waves in lattice settings: (1) The role of spatial dimensionality on nonlinear waves. Most of the earlier studies had been conducted in 1+1 (1 space, 1 time) dimension. We can now go even in 3+1 dimensions and examine physically realistic settings. (2) The interplay between disorder, nonlinearity and discreteness. It is well known that disorder can induce localization. Understanding the interplay of this mechanism with nonlinearity, especially in realistic discrete settings is then crucial, as defects are ubiquitous in physical systems. (3) Travelling waves in discrete systems are also of paramount importance. Intrinsic Localized Modes (ILM's) have the intriguing property of bottlenecking the energy. But could they carry it over (even more so in a targeted way) from one molecule to another (from one lattice site to another)? If so, they would be natural candidates for many bioenergetics processes, such as photosynthesis. (4) The study of instabilities of such waves. We believe that we are now close to a general classification of the possible instabilities and to a connection of these with the underlying symmetries of the physical problem. (5) Finally, the comprehension of progressively more complex physical models is also of interest. The latter involve additional physical perturbations such as, for example, long range interactions, boundary conditions, the interaction of multiple waves between them and with defects. Intrinsic Localized Modes (ILM's) have been a topic of increasing focus over the past decade as their role in energy localization and transport has been appreciated in a variety of contexts. Their applications span nonlinear optics and telecommunications (optical fibers and waveguides), atomic physics (BEC, an issue of fundamental relevance as highlighted by the Physics Nobel Prize in 2001 awarded for its experimental observation), condensed matter physics (superconductivity and charge density waves), biophysics (the local breaking of DNA and conformational changes in proteins), and environmental science (nucleation of liquid droplets in the atmosphere). The areas of interest are diverse and broad, the impact of the understanding of the fundamental physics is potentially very deep, but the underlying mathematical principles are simple and unifying. These models share a common structure of nonlinear complex behavior, the spatio-temporal variation of which we wish to explore. Understanding this behavior and the role of (nonlinear) waves in it is of fundamental interest in all these fields. The nonlinear waves represent the electric field of light in optics, the quantum-mechanical Bose particle wavefunction in BEC, the DNA base-pair distance or the liquid-vapor interface of a nucleating droplet in the atmosphere. The properties of these waves, their stability, dynamical evolution and internal structure are therefore at the heart of a wealth of physical effects. The goal of our research is to explore these features using a combination of analytical and computational mathematical techniques and physical intuition. Our project addresses, in particular, lattice dynamical systems, where space is discrete, as is the case in many fundamental applications, such as optical waveguides, DNA, and arrays of superconducting Josephson junctions.
该提案的目的是结合数值方法(连续和分岔)使用多种数学工具和技术(哈密尔顿范式、变分分析、指数渐进、可积方法、多尺度技术、均质化和埃文斯函数方法等)理论工具、牛顿型方法以及数值线性稳定性分析和直接时间积分)系统地探索离散系统中的非线性波。特别是,我们计划解决晶格设置中波的行为、动力学和稳定性的以下方面:(1)空间维度对非线性波的作用。大多数早期研究都是在1+1(1空间,1时间)维度进行的。 我们现在甚至可以进入 3+1 维度并检查物理真实设置。 (2)无序性、非线性和离散性之间的相互作用。 众所周知,紊乱可以诱导定位。 了解这种机制与非线性的相互作用,尤其是在现实的离散设置中至关重要,因为缺陷在物理系统中无处不在。 (3) 离散系统中的行波也至关重要。本征局域模式 (ILM) 具有令人着迷的能量瓶颈特性。 但他们能否将其从一个分子转移到另一个分子(从一个晶格位点转移到另一个分子位点)(甚至以有针对性的方式)? 如果是这样,它们将成为许多生物能过程的天然候选者,例如光合作用。 (4)此类波的不稳定性研究。我们相信,我们现在已经接近对可能的不稳定性进行一般分类,并将这些不稳定性与物理问题的基本对称性联系起来。 (5) 最后,理解逐渐复杂的物理模型也很有趣。 后者涉及额外的物理扰动,例如长程相互作用、边界条件、它们之间以及与缺陷的多个波的相互作用。本质局域化模式(ILM)在过去十年中已成为越来越受关注的话题,因为它们在能源局域化和运输中的作用在各种情况下都得到了重视。 它们的应用涵盖非线性光学和电信(光纤和波导)、原子物理学(BEC,2001 年因其实验观察而荣获诺贝尔物理学奖所强调的一个具有根本意义的问题)、凝聚态物理学(超导性和电荷密度波) 、生物物理学(DNA 的局部断裂和蛋白质的构象变化)和环境科学(大气中液滴的成核)。 感兴趣的领域多种多样且广泛,对基础物理学的理解的影响可能非常深刻,但基本的数学原理简单且统一。 这些模型共享非线性复杂行为的共同结构,我们希望探索其时空变化。 了解这种行为以及(非线性)波在其中的作用对于所有这些领域都具有根本意义。 非线性波代表光学中的光电场、BEC 中的量子力学玻色粒子波函数、DNA 碱基对距离或大气中成核液滴的液汽界面。 因此,这些波的特性、稳定性、动力学演化和​​内部结构是大量物理效应的核心。 我们研究的目标是结合分析和计算数学技术以及物理直觉来探索这些特征。 我们的项目特别针对空间离散的晶格动力学系统,就像许多基本应用的情况一样,例如光波导、DNA 和超导约瑟夫森结阵列。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Panayotis Kevrekidis其他文献

Panayotis Kevrekidis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Panayotis Kevrekidis', 18)}}的其他基金

Collaborative Research: Collapse, Rogue Waves, and their Applications: From Theory to Computation and Beyond
合作研究:塌陷、异常波浪及其应用:从理论到计算及其他
  • 批准号:
    2204702
  • 财政年份:
    2022
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Standard Grant
Collaborative Research: From Quantum Droplets & Spinor Solitons to Vortex Knots & Topological States: Beyond the Standard Mean-Field in Atomic BECs
合作研究:来自量子液滴
  • 批准号:
    2110030
  • 财政年份:
    2021
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Stability of Nonlinear Wave Structures in Lattices
合作研究:晶格中非线性波结构的稳定性
  • 批准号:
    1809074
  • 财政年份:
    2018
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Non-Hamiltonian Wave Dynamics in Atomic & Optical Models
OP:合作研究:原子中的非哈密尔顿波动力学
  • 批准号:
    1602994
  • 财政年份:
    2016
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: New Directions in Atomic Bose-Einstein Condensates
合作研究:原子玻色-爱因斯坦凝聚态的新方向
  • 批准号:
    1312856
  • 财政年份:
    2013
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Standard Grant
DynSyst_Special_Topics:Collaborative Research: Fundamental and Applied Dynamics of Granular Crystals: Disorder, Localization and Energy Harvesting
DynSyst_Special_Topics:合作研究:粒状晶体的基础和应用动力学:无序、局域化和能量收集
  • 批准号:
    1000337
  • 财政年份:
    2010
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Standard Grant
CAREER: Solitons in Bose-Einstein Condensates: Generation, Manipulation and Pattern Formation
职业:玻色-爱因斯坦凝聚中的孤子:生成、操纵和模式形成
  • 批准号:
    0349023
  • 财政年份:
    2004
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Standard Grant

相似国自然基金

Riemann-Hilbert方法与孤子方程解的长时间渐近
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
孤子产生的机理及其高效可控的发射方法
  • 批准号:
    12174191
  • 批准年份:
    2021
  • 资助金额:
    62 万元
  • 项目类别:
    面上项目
多分量孤子方程的Darboux变换:Riccati方程和Baker-Akhiezer函数方法
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
孤子在色散管理系统中的非线性优化
  • 批准号:
    11905009
  • 批准年份:
    2019
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
一类可积Camassa-Holm型方程:反谱变换方法与孤子的相互作用
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    5 万元
  • 项目类别:
    专项基金项目

相似海外基金

Integrable systems/solitons, such as methods of their construction or boundary conditions
可积系统/孤子,例如其构造方法或边界条件
  • 批准号:
    2620748
  • 财政年份:
    2021
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Studentship
Pathophysiological analysis of mental disorder caused by disturbance of GABAergic system in the brain due to maternal separation stress and search for treatment methods
母体分离应激脑GABA能系统紊乱所致精神障碍的病理生理分析及治疗方法探寻
  • 批准号:
    20K07270
  • 财政年份:
    2020
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of nonequilibrium dynamics of integrable quantum systems in association with the relaxation of isolated quantum systems and the dynamical quantum phase transition of the many-body localization
可积量子系统的非平衡动力学研究与孤立量子系统的弛豫和多体局域化的动态量子相变相关
  • 批准号:
    18K03450
  • 财政年份:
    2018
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New methods of study in noncommutative algebraic geometry using representation theory of algebras
利用代数表示论研究非交换代数几何的新方法
  • 批准号:
    25400037
  • 财政年份:
    2013
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Noncommutative Solitons and application to string theory and integrable systems
非交换孤子及其在弦理论和可积系统中的应用
  • 批准号:
    23740182
  • 财政年份:
    2011
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了