OP: Collaborative Research: Non-Hamiltonian Wave Dynamics in Atomic & Optical Models

OP:合作研究:原子中的非哈密尔顿波动力学

基本信息

  • 批准号:
    1602994
  • 负责人:
  • 金额:
    $ 16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

This project focusses on the effects of energy gain and/or loss when waves propagate through non-linear media. The simplest kinds of wave motion exhibit a property called isochronism which was first observed by Galileo: The frequency of oscillation of the wave is independent of its amplitude (or size). Wave media in which this simple behavior is observed are called "linear". Non-linear media are also known, in which the frequency of the wave varies with its amplitude. If the medium is also dispersive (like a prism), then waves with different frequency will travel with different speed. The combined effects of non-linearity and dispersion can be quite striking, as with the formation of solitons - stable wave patterns that propagate through the medium without changing shape. A central focus of this work is to explore how solitons and other coherent structures that form in non-linear media, such as vortices, are responsible for the localization and transport of energy and information. If the medium through which the wave propagates is dissipative, then energy is lost to friction or radiation, and so stabilizing the flow of energy and information requires energy input (gain). The work will focus especially on the interplay of gain and loss in current experimental, theoretical, and computational investigations into the behavior of non-linear media formed from ultra-cold atomic vapors. This project involves the comprehensive examination of some selected key aspects within this class of systems. The study is based on variants of one of the most prototypical and most relevant models for the evolution of nonlinear waves: the nonlinear Schroedinger (NLS) equation. The NLS equation is at the heart of a wide variety of physical phenomena including, but not limited to, optical fibers, condensed matter physics, plasma waves, and deep water freak/rogue waves in fluid mechanics. In particular, the group will study the effects of gain and loss within the realm of (A) optical systems that have the so-called Parity-Time reversal (PT) symmetry, and possess a delicate balance between external gain and intrinsic loss that can robustly sustain the existence and propagation of coherent structures, (B) finite temperature Bose-Einstein condensates which have been proposed as candidates for sustaining/processing quantum information that could potentially realize the next generation of computational architectures, and finally, (C) exciton-polariton condensates, which provide another pristine and very accessible experimental setting for the manipulation of macroscopic quantum mechanics. Within these systems, the group will explore the interplay of the intrinsic scales induced by nonlinearity and dispersion and the extrinsic ones, stemming from gain and loss, and how this interplay affects the existence, stability and dynamics of different coherent structures that are the building blocks of information storage and processing. Within this program, the group expects to generate mathematical models and methods, as well as computational techniques, that will not only shed light to these particular atomic and optical applications and their experimental observations, but which may also be of broader use for the study of other non-conservative systems.
当波通过非线性培养基传播时,该项目的重点是能量增益和/或损失的影响。最简单的波动运动表现出一种称为等级的特性,该特性首先是由伽利略观察到的:波的振荡频率与其振幅(或大小)无关。观察到这种简单行为的波介质称为“线性”。也已知非线性介质,其中波的频率随其幅度而变化。如果培养基也是分散的(例如棱镜),则频率不同的波将以不同的速度传播。非线性和色散的综合效果可能会引人注目,就像孤子的形成一样 - 稳定的波模式,它们通过培养基传播而不会变化。这项工作的一个主要重点是探索在非线性媒体中形成的孤子和其他相干结构(例如涡流)如何负责能源和信息的定位和运输。如果波传播的介质是耗散的,则能量会损失在摩擦或辐射上,因此稳定能量和信息的流动需要能量输入(增益)。这项工作将特别集中在当前实验,理论和计算调查中,对由超冷原子蒸气形成的非线性培养基的行为的相互作用。 该项目涉及对此类系统中一些选定的关键方面的全面检查。该研究基于非线性波进化的最原型和最相关模型之一的变体:非线性schroedinger(NLS)方程。 NLS方程是多种物理现象的核心,包括但不限于流体力学中的光纤,冷凝物理物理学,血浆波和深水怪胎/流氓波。特别是,该小组将研究具有所谓的平等时间逆转(PT)对称性的(a)光学系统领域内的收益和损失的影响,并在外部损失和内在损失之间具有微妙的平衡(b)有限温度Bose-Einstein凝结物的坚固存在和传播,这些凝结物被提议作为维持/加工量子信息的候选者,这些信息可能有可能实现下一代计算体系结构,最后,(c)Ickiton--偏振子冷凝物,它为操纵宏观量子力学提供了另一个原始且非常容易获得的实验设置。在这些系统中,该组将探索非线性和分散性引起的固有量表的相互作用,以及外部量表,源于增益和损失,以及该相互作用如何影响不同的相干结构的存在,稳定性和动力学,这些结构是构建块的不同相干结构信息存储和处理。 在该计划中,该小组期望生成数学模型和方法以及计算技术,这些技术不仅会阐明这些特定的原子和光学应用及其实验观察结果,而且还可以更广泛地用于研究。其他非保守系统。

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exploring critical points of energy landscapes: From low-dimensional examples to phase field crystal PDEs
  • DOI:
    10.1016/j.cnsns.2020.105679
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Subramanian;I. Kevrekidis;P. Kevrekidis
  • 通讯作者:
    P. Subramanian;I. Kevrekidis;P. Kevrekidis
Quasistable quantum vortex knots and links in anisotropic harmonically trapped Bose-Einstein condensates
各向异性谐波俘获玻色-爱因斯坦凝聚中的准稳定量子涡结和链接
  • DOI:
    10.1103/physreva.99.063604
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Ticknor, Christopher;Ruban, Victor P.;Kevrekidis, P. G.
  • 通讯作者:
    Kevrekidis, P. G.
Breather stripes and radial breathers of the two-dimensional sine-Gordon equation
二维正弦戈登方程的通气条纹和径向通气
Long-range interactions of kinks
  • DOI:
    10.1103/physrevd.99.016010
  • 发表时间:
    2018-10
  • 期刊:
  • 影响因子:
    5
  • 作者:
    I. Christov;Robert J. Decker;A. Demirkaya;V. Gani;P. Kevrekidis;R. V. Radomskiy
  • 通讯作者:
    I. Christov;Robert J. Decker;A. Demirkaya;V. Gani;P. Kevrekidis;R. V. Radomskiy
Decay of two-dimensional quantum turbulence in binary Bose-Einstein condensates
二元玻色-爱因斯坦凝聚中二维量子湍流的衰变
  • DOI:
    10.1103/physreva.103.023301
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Mithun, Thudiyangal;Kasamatsu, Kenichi;Dey, Bishwajyoti;Kevrekidis, Panayotis G.
  • 通讯作者:
    Kevrekidis, Panayotis G.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Panayotis Kevrekidis其他文献

Panayotis Kevrekidis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Panayotis Kevrekidis', 18)}}的其他基金

Collaborative Research: Collapse, Rogue Waves, and their Applications: From Theory to Computation and Beyond
合作研究:塌陷、异常波浪及其应用:从理论到计算及其他
  • 批准号:
    2204702
  • 财政年份:
    2022
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: From Quantum Droplets & Spinor Solitons to Vortex Knots & Topological States: Beyond the Standard Mean-Field in Atomic BECs
合作研究:来自量子液滴
  • 批准号:
    2110030
  • 财政年份:
    2021
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: Stability of Nonlinear Wave Structures in Lattices
合作研究:晶格中非线性波结构的稳定性
  • 批准号:
    1809074
  • 财政年份:
    2018
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: New Directions in Atomic Bose-Einstein Condensates
合作研究:原子玻色-爱因斯坦凝聚态的新方向
  • 批准号:
    1312856
  • 财政年份:
    2013
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
DynSyst_Special_Topics:Collaborative Research: Fundamental and Applied Dynamics of Granular Crystals: Disorder, Localization and Energy Harvesting
DynSyst_Special_Topics:合作研究:粒状晶体的基础和应用动力学:无序、局域化和能量收集
  • 批准号:
    1000337
  • 财政年份:
    2010
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
CAREER: Solitons in Bose-Einstein Condensates: Generation, Manipulation and Pattern Formation
职业:玻色-爱因斯坦凝聚中的孤子:生成、操纵和模式形成
  • 批准号:
    0349023
  • 财政年份:
    2004
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Discrete Solitons: Methods, Theory and Applications
离散孤子:方法、理论和应用
  • 批准号:
    0204585
  • 财政年份:
    2002
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant

相似国自然基金

数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
颅颌面手术机器人辅助半面短小牵张成骨术的智能规划与交互协作研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
面向自主认知与群智协作的多智能体制造系统关键技术研究
  • 批准号:
    52305539
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模物联网多协作绿色信息感知和智慧响应决策一体化方法研究
  • 批准号:
    62371149
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
多UAV协作的大规模传感网并发充电模型及其服务机制研究
  • 批准号:
    62362017
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Collaborative Research: OP: Meta-optical Computational Image Sensors
合作研究:OP:元光学计算图像传感器
  • 批准号:
    2127235
  • 财政年份:
    2021
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: OP: Transition Metal Alloys: Emergent Properties for Near-Infrared Hot-Carrier Optoelectronics
合作研究:OP:过渡金属合金:近红外热载流子光电器件的新兴特性
  • 批准号:
    2114312
  • 财政年份:
    2021
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: OP: Meta-optical Computational Image Sensors
合作研究:OP:元光学计算图像传感器
  • 批准号:
    2127331
  • 财政年份:
    2021
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: OP: Transition Metal Alloys: Emergent Properties for Near-Infrared Hot-Carrier Optoelectronics
合作研究:OP:过渡金属合金:近红外热载流子光电器件的新兴特性
  • 批准号:
    2114304
  • 财政年份:
    2021
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Development of Advanced Image Reconstruction Methods for Pre-Clinical Applications of Photoacoustic Computed Tomography
OP:合作研究:光声计算机断层扫描临床前应用的先进图像重建方法的开发
  • 批准号:
    1938702
  • 财政年份:
    2019
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了