CAREER: Solitons in Bose-Einstein Condensates: Generation, Manipulation and Pattern Formation

职业:玻色-爱因斯坦凝聚中的孤子:生成、操纵和模式形成

基本信息

  • 批准号:
    0349023
  • 负责人:
  • 金额:
    $ 40.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-07-01 至 2010-06-30
  • 项目状态:
    已结题

项目摘要

Abstract: CAREER Award DMS-0349023Panayotis Kevrekidis, University of Massachusetts at AmherstTitle: CAREER: Solitons in Bose-Einstein Condensates: Generation, Manipulation and Pattern FormationThe aim of this project is to examine the behavior of solitary wavestructures in the setting of atomic physics (Bose-Einstein Condensates). Solitons as per their structural robustness and quasi-elastic interactions are natural building blocks that have been used for information transmission in optical settings in the past and could naturally be extended as information carriers in this new matter wave setup. Furthermore, these structures can be appropriately manipulated, waveguided or used to construct various patterns at this microscopic (atomic) level. The study will be undertaken at three different levels: (1) The level of creating these solitary waves by taking advantage of instabilities and/or experimentally available mechanisms (such as the Feshbach resonance); (2) The one of manipulating the waves (either dragging them by means of an optical tweezers or waveguiding them through junctions); (3) And, finally, at the level of combining them to create patterns and to identify their steady states and structural transitions. These steps will be carried through for the two principal types of interactions: a) For attractive interactions between the atoms (e.g., for focusing nonlinearities and negative scattering lengths as in the case of lithium); b) For repulsive interactions (e.g., for defocusing nonlinearities and positive scattering lengths as in the case of rubidium and sodium). The models that will be examined will be both continuum models of partial differential equations with external potentials (linear or quadratic, or combination thereof), as well as quasi-discrete ones (relevant for periodic external potentialsas in the case of the so-called optical lattice). The techniques that will be used will involve regular and singular perturbationmethods, linear and modulational stability analysis, regular and possibly exponential asymptotics, numerical bifurcation theory as well as direct numerical simulations and also molecular dynamics techniques (to study patterns and their structural transitions). The main focus of this research project is a detailed study of solitary waves generated in the very controllable, ultra-low temperature, atomic physics context of Bose-Einstein condensates (BECs). Since their recent experimental realization (for which the 2001 Physics Nobel prize was awarded), BECs have been the center of an intensive and ever growing experimental and theoretical effort in the Mathematics and Physics communities. The examination of BECs has also strong ties with a deeper understanding of the exciting and important fields of superconductivity and superfluidity (which were the theme of the Physics Nobel prize in 2003). From a Mathematical Physics perspective, one of the most interesting and appealing aspects of studying BECs is their rich nonlinear wave phenomenology, the wide variety of possible settings (one to three dimensions) and the detailed experimental control that permits a precise engineering/manipulation of the external conditions under which these waves dynamically evolve.The main purpose of this research effort is to extend and deepen our understanding of the fundamental structures and waves and their roleand importance in BECs, but also more generally (due to the similarmathematical description) in nonlinear optics (optical fibers andwaveguides) as well as wave physics. As an aside, it should be noted that this effort will heavily rely on computational resources and the concomitant use of numerical codes that model these phenomena; it should also be remarked that one of the longer term perspectives of this activity on matter waves is to conceive and construct novel devices that would guide and more generally control the motion of the matter waves and could potentially be used for quantum information processing at the nanoscale. These aspects lead us to expect that significant benefits may result from the implementation of this project in areas of strategic federal interest such as high performance computing and materials and manufacturing.
摘要:职业奖 DMS-0349023Panayotis Kevrekidis,马萨诸塞大学阿默斯特分校标题:职业:玻色-爱因斯坦凝聚态中的孤子:生成、操纵和图案形成该项目的目的是研究原子物理背景下孤立波结构的行为(玻色) -爱因斯坦凝聚)。孤子因其结构鲁棒性和准弹性相互作用而成为过去在光学环境中用于信息传输的自然构建块,并且可以自然地扩展为这种新物质波设置中的信息载体。此外,这些结构可以被适当地操纵、波导或用于在这种微观(原子)水平上构建各种图案。该研究将在三个不同的层面上进行:(1)利用不稳定性和/或实验上可用的机制(例如费什巴赫共振)产生这些孤立波的层面; (2)操纵波的一种(通过光镊拖动波或通过连接点引导波); (3) 最后,在将它们结合起来以创建模式并识别它们的稳态和结构转变的层面上。这些步骤将针对两种主要类型的相互作用进行: a) 原子之间的吸引相互作用(例如,聚焦非线性和负散射长度,如锂的情况); b) 对于排斥相互作用(例如,对于散焦非线性和正散射长度,如铷和钠的情况)。将要检查的模型将是具有外部势(线性或二次或其组合)的偏微分方程的连续模型,以及准离散模型(与周期性外部势相关,如所谓的光学格子)。将使用的技术将涉及规则和奇异扰动方法、线性和调制稳定性分析、规则和可能的指数渐近、数值分岔理论以及直接数值模拟和分子动力学技术(用于研究模式及其结构转变)。该研究项目的主要重点是对玻色-爱因斯坦凝聚体(BEC)的高度可控、超低温原子物理背景中产生的孤立波进行详细研究。自从最近的实验实现(2001 年诺贝尔物理学奖被授予)以来,BEC 一直是数学和物理界密集且不断发展的实验和理论工作的中心。 BEC 的检验还与更深入地了解超导性和超流性等令人兴奋且重要的领域(这是 2003 年诺贝尔物理学奖的主题)密切相关。从数学物理的角度来看,研究 BEC 最有趣和最吸引人的方面之一是其丰富的非线性波现象学、各种可能的设置(一维到三维)以及允许精确工程/操纵的详细实验控制。这些波动态演化的外部条件。这项研究工作的主要目的是扩展和加深我们对基本结构和波及其在 BEC 中的作用和重要性的理解,而且更广泛地(由于类似的数学描述)在非线性中光学(光纤和波导)以及波物理学。顺便说一句,应该指出的是,这项工作将严重依赖计算资源以及对这些现象进行建模的数字代码的伴随使用;还应该指出的是,这项关于物质波的活动的长期前景之一是构思和构建新颖的设备,这些设备将引导并更普遍地控制物质波的运动,并有可能用于纳米级的量子信息处理。这些方面使我们预计,在高性能计算、材料和制造等联邦战略利益领域实施该项目可能会带来显着的效益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Panayotis Kevrekidis其他文献

Panayotis Kevrekidis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Panayotis Kevrekidis', 18)}}的其他基金

Collaborative Research: Collapse, Rogue Waves, and their Applications: From Theory to Computation and Beyond
合作研究:塌陷、异常波浪及其应用:从理论到计算及其他
  • 批准号:
    2204702
  • 财政年份:
    2022
  • 资助金额:
    $ 40.08万
  • 项目类别:
    Standard Grant
Collaborative Research: From Quantum Droplets & Spinor Solitons to Vortex Knots & Topological States: Beyond the Standard Mean-Field in Atomic BECs
合作研究:来自量子液滴
  • 批准号:
    2110030
  • 财政年份:
    2021
  • 资助金额:
    $ 40.08万
  • 项目类别:
    Standard Grant
Collaborative Research: Stability of Nonlinear Wave Structures in Lattices
合作研究:晶格中非线性波结构的稳定性
  • 批准号:
    1809074
  • 财政年份:
    2018
  • 资助金额:
    $ 40.08万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Non-Hamiltonian Wave Dynamics in Atomic & Optical Models
OP:合作研究:原子中的非哈密尔顿波动力学
  • 批准号:
    1602994
  • 财政年份:
    2016
  • 资助金额:
    $ 40.08万
  • 项目类别:
    Continuing Grant
Collaborative Research: New Directions in Atomic Bose-Einstein Condensates
合作研究:原子玻色-爱因斯坦凝聚态的新方向
  • 批准号:
    1312856
  • 财政年份:
    2013
  • 资助金额:
    $ 40.08万
  • 项目类别:
    Standard Grant
DynSyst_Special_Topics:Collaborative Research: Fundamental and Applied Dynamics of Granular Crystals: Disorder, Localization and Energy Harvesting
DynSyst_Special_Topics:合作研究:粒状晶体的基础和应用动力学:无序、局域化和能量收集
  • 批准号:
    1000337
  • 财政年份:
    2010
  • 资助金额:
    $ 40.08万
  • 项目类别:
    Standard Grant
Discrete Solitons: Methods, Theory and Applications
离散孤子:方法、理论和应用
  • 批准号:
    0204585
  • 财政年份:
    2002
  • 资助金额:
    $ 40.08万
  • 项目类别:
    Continuing Grant

相似国自然基金

多组分玻色凝聚体系中孤子解及其色散关系研究
  • 批准号:
    12375005
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
多组分高维玻色-爱因斯坦凝聚系统中孤子、畸形波等局域波的理论研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    63 万元
  • 项目类别:
自旋轨道耦合偶极玻色-爱因斯坦凝聚体中的孤子及涡旋动力学研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    50 万元
  • 项目类别:
光晶格势中物质波孤子动力学演化行为研究
  • 批准号:
    11905308
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
宇称-时间对称量子势在玻色-爱因斯坦凝聚物质波孤子中的应用
  • 批准号:
    11981240355
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

Vortex solitons in Bose-Einstein condensates with spin-orbit coupling
自旋轨道耦合玻色-爱因斯坦凝聚中的涡孤子
  • 批准号:
    18K03462
  • 财政年份:
    2018
  • 资助金额:
    $ 40.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Formation of an atom wave circuit and its application to matter wave solitons
原子波电路的形成及其在物质波孤子中的应用
  • 批准号:
    22340117
  • 财政年份:
    2010
  • 资助金额:
    $ 40.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Vortices and solitons in finite-temperature Bose-Einstein condensates
有限温度玻色-爱因斯坦凝聚中的涡旋和孤子
  • 批准号:
    EP/D040892/1
  • 财政年份:
    2006
  • 资助金额:
    $ 40.08万
  • 项目类别:
    Research Grant
Solitons and topological defects in multicomponent Bose-Einstein condensates
多组分玻色-爱因斯坦凝聚中的孤子和拓扑缺陷
  • 批准号:
    18740213
  • 财政年份:
    2006
  • 资助金额:
    $ 40.08万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Motion of nonlinear Schroedinger solitons under external potentials
外部电势下非线性薛定谔孤子的运动
  • 批准号:
    17540358
  • 财政年份:
    2005
  • 资助金额:
    $ 40.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了