RUI: Ultrafast THz Spectroscopy of Spin Dynamics in Semiconductors
RUI:半导体自旋动力学的超快太赫兹光谱
基本信息
- 批准号:0074622
- 负责人:
- 金额:$ 18.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-06-01 至 2003-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will use ultrafast THz spectroscopy to study spin excitations in narrow-gap semiconductor quantum wells. These systems exhibit a large spin-orbit coupling, permitting the spin-state of carriers to be controlled with an electric field such as that from a gate contact. These systems will be investigated with a time-resolved spectroscopic probe tuned to the energy scale of the spin-orbit interaction (1-5meV). The lifetimes and energy spectra of spin excitations will be determined for a number of quantum well structures. Such measurements are made possible by the spin-orbit interaction, which will allow optical generation of carriers in a well-defined spin-state, and optical probes of the evolution of spins. Ultrafast THz spectroscopy will also be used to perform pulsed-EPR measurements at terahertz frequencies on donor electrons in InAs. The successful performance of these experiments will demonstrate the applicability of this technique to a wide range of physical systems. Terahertz frequency generation on patterned semiconductor surfaces will also be investigated. It is expected that surface patterning will boost the efficiency of generation of optically pumped THz pulses from semiconductor surfaces by about one order of magnitude. Lastly, carrier lifetimes will be investigated in picosecond carrier-lifetime materials such as low-temperature grown GaAs and radiation damaged semiconductors. Undergraduate students will participate in this research which will be performed at Macalester College and the University of Minnesota. The project will also benefit from collaboration with an industrial partner. The students will thus also acquire research experience in a setting of a major research enterprise. %%%As advances in technology push the size of transistors towards atomic dimensions, their properties will be increasingly influenced by quantum mechanics. For this reason, scientists are exploring devices that rely on quantum phenomena for their function. One such promising area involves semiconductor devices in which an electron's spin, rather than its charge, is used to control the flow of electric current. At the present time the most promising systems for realizing such semiconductor spin-transport devices are thin layers of materials such as indium arsenide and indium antimonide. Realizing these new technologies requires, however, a detailed understanding of the behavior of electron spins in these systems at ultra-short time intervals. This research is devoted to an experimental investigation of the optical properties of indium arsenide and indium antimonide by means of infrared spectroscopy at a time resolution of one trillionth of a second. Such measurements will reveal how much energy is required to change the direction of the spin in these systems, and how long the spin remains in the newly oriented state. Additional experiments will be performed to demonstrate the feasibility of pulsed magnetic resonance spectroscopy at these ultra-short time scales. This research will be conducted at Macalester College as well as at the University of Minnesota. The project will also benefit from the participation of an industrial collaborator. Undergraduate students will be engaged in this research. They will thereby acquire skills and knowledge in a forefront area of condensed matter physics and materials science. They will be prepared for advanced studies with an appreciation for the needs of advanced technology and for entry into the scientific/technological workforce.
该项目将使用Ultrafast THZ光谱学来研究狭窄的半导体量子井中的旋转激发。这些系统表现出大型自旋轨道耦合,允许载体的自旋状态由电场控制,例如从栅极接触中。这些系统将通过时间分辨的光谱探针进行研究,并调谐到自旋轨道相互作用的能量尺度(1-5MEV)。对于许多量子井结构,将确定自旋激发的寿命和能量光谱。自旋轨道相互作用使此类测量成为可能,这将允许在定义明确的自旋状态下进行光学生成载体,以及旋转演变的光学探针。 超快THZ光谱也将用于在INAS中的供体电子上对Terahertz频率进行脉冲-EPR测量。这些实验的成功性能将证明该技术对广泛的物理系统的适用性。还将研究图案的半导体表面上的Terahertz频率产生。预计表面模式将提高半导体表面上光泵送的Thz脉冲的产生效率约一个数量级。 最后,载体寿命将在千秒携带者的材料中进行研究,例如低温种植的GAA和辐射损坏的半导体。 本科生将参加这项研究,该研究将在麦卡莱斯特学院和明尼苏达大学进行。该项目还将受益于与工业合作伙伴的合作。因此,学生还将在一家大型研究企业的环境中获得研究经验。 %%%随着技术的进步将晶体管的大小推向原子维度,它们的性质将越来越受量子力学的影响。 因此,科学家正在探索依靠量子现象来功能的设备。这样一个有希望的区域涉及半导体设备,其中电子的自旋而不是电荷用于控制电流的流动。目前,实现这种半导体自旋传输设备的最有前途的系统是薄层材料(例如砷化胺和二胺)的材料层。但是,意识到这些新技术需要在超短时间间隔中详细了解这些系统中电子旋转的行为。 这项研究致力于通过红外光谱法以一万分之一的时间分辨率通过红外光谱进行实验研究。这样的测量将揭示需要多少能量才能改变这些系统中旋转方向,以及旋转在新定向状态中保持多长时间。将进行其他实验,以证明在这些超短时间尺度上脉冲磁共振光谱的可行性。 这项研究将在Macalester学院以及明尼苏达大学进行。该项目还将受益于工业合作者的参与。 本科生将从事这项研究。 因此,他们将在凝结物物理和材料科学的最前沿领域中获取技能和知识。 他们将为高级研究做好准备,并感谢先进技术的需求以及进入科学/技术劳动力的需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Heyman其他文献
Some Problems of Current Interest Relating to Classification and Treatment of Uterine Carcinoma
- DOI:
10.1016/s0002-9378(15)30397-5 - 发表时间:
1955-01-01 - 期刊:
- 影响因子:
- 作者:
James Heyman - 通讯作者:
James Heyman
PET-CT scan timing after radical treatment for oropharyngeal squamous-cell carcinoma at Velindre: Adherence to NICE guidelines
- DOI:
10.1016/j.clon.2022.09.011 - 发表时间:
2022-11-01 - 期刊:
- 影响因子:
- 作者:
Fiona Williams;Nicholas Morley;Emma Wyatt-Haines;James Heyman;Thomas Rackley;Mererid Evans;Elin Evans;Richard Webster;Nachi Palaniappan - 通讯作者:
Nachi Palaniappan
James Heyman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Heyman', 18)}}的其他基金
MRI-R2: Acquisition of a High-Power Femtosecond Ti:Sapphire Laser for Ultrafast Terahertz Spectroscopy
MRI-R2:获取用于超快太赫兹光谱的高功率飞秒钛宝石激光器
- 批准号:
0959341 - 财政年份:2010
- 资助金额:
$ 18.92万 - 项目类别:
Standard Grant
RUI: Ultrafast Conductivity Measurements of Graphene Films
RUI:石墨烯薄膜的超快电导率测量
- 批准号:
1006065 - 财政年份:2010
- 资助金额:
$ 18.92万 - 项目类别:
Continuing Grant
RUI: Electronic Properties of Semiconductors from Ultrafast Terahertz Spectroscopy
RUI:超快太赫兹光谱的半导体电子特性
- 批准号:
0606181 - 财政年份:2006
- 资助金额:
$ 18.92万 - 项目类别:
Standard Grant
RUI: Ultrafast Terahertz Spectroscopy of Carrier Dynamics in Semiconductors
RUI:半导体载流子动力学的超快太赫兹光谱
- 批准号:
0317276 - 财政年份:2003
- 资助金额:
$ 18.92万 - 项目类别:
Standard Grant
Acquisition of a Magneto-Optical Cryostat for Terahertz Studies of Semiconductor Heterostructures
获取用于半导体异质结构太赫兹研究的磁光低温恒温器
- 批准号:
0215717 - 财政年份:2002
- 资助金额:
$ 18.92万 - 项目类别:
Standard Grant
MRI: Acquisition of a Short-pulse Ti:Sapphire Laser for Terahertz Studies of Semiconductor Heterostructures
MRI:获取短脉冲钛宝石激光器用于半导体异质结构的太赫兹研究
- 批准号:
0116323 - 财政年份:2001
- 资助金额:
$ 18.92万 - 项目类别:
Standard Grant
Microelectronics in the Undergraduate Physics Laboratory
本科生物理实验室中的微电子学
- 批准号:
9851627 - 财政年份:1998
- 资助金额:
$ 18.92万 - 项目类别:
Standard Grant
Optical Spectroscopy and Magnetic Resonance in UndergraduatePhysics
本科物理学中的光谱学和磁共振
- 批准号:
9552221 - 财政年份:1995
- 资助金额:
$ 18.92万 - 项目类别:
Standard Grant
相似国自然基金
基于高时空分辨THz-STM的范德华异质结超快动力学成像研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
基于高时空分辨THz-STM的范德华异质结超快动力学成像研究
- 批准号:12274424
- 批准年份:2022
- 资助金额:55.00 万元
- 项目类别:面上项目
二维VO2纳米片相变动力学及超快THz调制器研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
二维VO2纳米片相变动力学及超快THz调制器研究
- 批准号:52102156
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
TATB外模选键激发下振动耦合动力学的窄线宽THz泵浦-IR超连续探测超快光谱学研究
- 批准号:
- 批准年份:2020
- 资助金额:50 万元
- 项目类别:联合基金项目
相似海外基金
THz frequency structures for particle accelerators: Realising ultrafast electron beam manipulation and diagnostics
粒子加速器的太赫兹频率结构:实现超快电子束操纵和诊断
- 批准号:
ST/Y510002/1 - 财政年份:2024
- 资助金额:
$ 18.92万 - 项目类别:
Research Grant
Probing Intermolecular Dynamics with Nonlinear Ultrafast THz Spectroscopy
用非线性超快太赫兹光谱探测分子间动力学
- 批准号:
2316042 - 财政年份:2023
- 资助金额:
$ 18.92万 - 项目类别:
Standard Grant
New Frontiers in Ultrafast High-Field Plasmonics, Nonlinear Nanoplasmonics, Plasmoelectronics, and THz Spinplasmonics
超快高场等离子体激元、非线性纳米等离子体激元、等离子体电子学和太赫兹自旋等离子体激元的新前沿
- 批准号:
RGPIN-2020-03999 - 财政年份:2022
- 资助金额:
$ 18.92万 - 项目类别:
Discovery Grants Program - Individual
New Frontiers in Ultrafast High-Field Plasmonics, Nonlinear Nanoplasmonics, Plasmoelectronics, and THz Spinplasmonics
超快高场等离子体激元、非线性纳米等离子体激元、等离子体电子学和太赫兹自旋等离子体激元的新前沿
- 批准号:
RGPIN-2020-03999 - 财政年份:2021
- 资助金额:
$ 18.92万 - 项目类别:
Discovery Grants Program - Individual
New Frontiers in Ultrafast High-Field Plasmonics, Nonlinear Nanoplasmonics, Plasmoelectronics, and THz Spinplasmonics
超快高场等离子体激元、非线性纳米等离子体激元、等离子体电子学和太赫兹自旋等离子体激元的新前沿
- 批准号:
RGPIN-2020-03999 - 财政年份:2020
- 资助金额:
$ 18.92万 - 项目类别:
Discovery Grants Program - Individual