RUI: Ultrafast Conductivity Measurements of Graphene Films

RUI:石墨烯薄膜的超快电导率测量

基本信息

  • 批准号:
    1006065
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-01 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

****NON-TECHNICAL ABSTRACT****Graphene is a novel carbon material consisting of one-atom thick sheets of carbon. Discovered in 2004, this material holds great promise for electronic applications ranging from transparent conducting films (used in solar cells) to ultra-high-speed transistors. This individual investigator award supports a research project at a predominately undergraduate institution that will investigate how rapidly the conductivity of graphene can be varied, which is relevant to the development of high-speed graphene-based electronics. It is expected that the conductivity of graphene can change on very fast timescales. To investigate the fast change in conductivity, the graphene sample will be excited with an ultra-short pulse of light and subsequently the resulting change in conductivity will be measured with an ultra-short pulse of terahertz radiation. Conductivity measurements under a range of conditions will enable the isolation of the fundamental processes, which control the electronic properties of graphene. This research will also serve to train undergraduate science students in Photonics and experimental Condensed Matter Physics. During the past 15 years, the investigator's laboratory has trained 35 advanced undergraduates, more than two thirds of whom have pursued graduate degrees in Science, Mathematics or Engineering.****TECHNICAL ABSTRACT****Graphene shows exceptional promise as an electronic material for nanoscale transistors and high-speed electronics. This individual investigator award supports a project that will study carrier dynamics in graphene and ultra-thin graphite using time-resolved THz spectroscopy. Conducting films of graphene flakes can now be easily produced from graphene oxide and from graphene solutions. Time resolved THz and infrared spectroscopy are well-suited tools for studying the electronic properties of these flakes. These measurements use an optical or infrared pump pulse to excite a sample and a delayed THz pulse to probe the resulting transient change in conductivity. The research is expected to determine the electron and hole scattering rates, lifetimes and mobilities in graphene flakes formed by mechanical or chemical exfoliation of graphite. In this way the measurements will help probe the suitability of these materials for a variety of applications from transparent conducting films to transistors. The research program will also provide education and research training opportunities for advanced undergraduate students. During the past 15 years, the investigator's laboratory has trained 35 advanced undergraduates, more than two thirds of whom have pursued graduate degrees in Science, Mathematics or Engineering.
****非技术摘要****石墨烯是一种新型碳材料,由单原子厚的碳片组成。 这种材料于 2004 年被发现,在从透明导电薄膜(用于太阳能电池)到超高速晶体管等电子应用领域具有广阔的前景。 该个人研究员奖支持一个以本科为主的机构的一个研究项目,该项目将研究石墨烯电导率的变化速度,这与高速石墨烯电子产品的开发相关。 预计石墨烯的电导率可以在非常快的时间尺度上发生变化。 为了研究电导率的快速变化,将用超短光脉冲激发石墨烯样品,随后用太赫兹辐射的超短脉冲测量由此产生的电导率变化。 在一系列条件下进行电导率测量将能够隔离控制石墨烯电子特性的基本过程。 这项研究还将用于培训光子学和实验凝聚态物理方面的本科生。 在过去 15 年里,研究人员的实验室已培养了 35 名高级本科生,其中三分之二以上已攻读科学、数学或工程研究生学位。****技术摘要****石墨烯作为电子材料显示出非凡的前景用于纳米级晶体管和高速电子产品。 该个人研究员奖支持一个项目,该项目将使用时间分辨太赫兹光谱研究石墨烯和超薄石墨中的载流子动力学。 现在可以很容易地用氧化石墨烯和石墨烯溶液生产石墨烯薄片导电薄膜。 时间分辨太赫兹和红外光谱是研究这些薄片的电子特性的非常合适的工具。这些测量使用光学或红外泵浦脉冲来激发样品,并使用延迟的太赫兹脉冲来探测由此产生的电导率瞬态变化。 该研究预计将确定通过机械或化学剥离石墨形成的石墨烯薄片中的电子和空穴散射率、寿命和迁移率。 通过这种方式,测量将有助于探索这些材料对于从透明导电薄膜到晶体管的各种应用的适用性。 该研究计划还将为高年级本科生提供教育和研究培训机会。在过去的15年里,研究者的实验室已培养了35名高级本科生,其中三分之二以上获得了科学、数学或工程学的研究生学位。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Heyman其他文献

James Heyman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Heyman', 18)}}的其他基金

MRI-R2: Acquisition of a High-Power Femtosecond Ti:Sapphire Laser for Ultrafast Terahertz Spectroscopy
MRI-R2:获取用于超快太赫兹光谱的高功率飞秒钛宝石激光器
  • 批准号:
    0959341
  • 财政年份:
    2010
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
RUI: Electronic Properties of Semiconductors from Ultrafast Terahertz Spectroscopy
RUI:超快太赫兹光谱的半导体电子特性
  • 批准号:
    0606181
  • 财政年份:
    2006
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
RUI: Ultrafast Terahertz Spectroscopy of Carrier Dynamics in Semiconductors
RUI:半导体载流子动力学的超快太赫兹光谱
  • 批准号:
    0317276
  • 财政年份:
    2003
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Acquisition of a Magneto-Optical Cryostat for Terahertz Studies of Semiconductor Heterostructures
获取用于半导体异质结构太赫兹研究的磁光低温恒温器
  • 批准号:
    0215717
  • 财政年份:
    2002
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Short-pulse Ti:Sapphire Laser for Terahertz Studies of Semiconductor Heterostructures
MRI:获取短脉冲钛宝石激光器用于半导体异质结构的太赫兹研究
  • 批准号:
    0116323
  • 财政年份:
    2001
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
RUI: Ultrafast THz Spectroscopy of Spin Dynamics in Semiconductors
RUI:半导体自旋动力学的超快太赫兹光谱
  • 批准号:
    0074622
  • 财政年份:
    2000
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Microelectronics in the Undergraduate Physics Laboratory
本科生物理实验室中的微电子学
  • 批准号:
    9851627
  • 财政年份:
    1998
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Optical Spectroscopy and Magnetic Resonance in UndergraduatePhysics
本科物理学中的光谱学和磁共振
  • 批准号:
    9552221
  • 财政年份:
    1995
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant

相似国自然基金

氧化/还原助剂修饰CdS用于光催化分解H2S制氢的超快光物理机理研究
  • 批准号:
    22311530118
  • 批准年份:
    2023
  • 资助金额:
    37 万元
  • 项目类别:
    国际(地区)合作与交流项目
色散差动免扫描面阵彩色共聚焦超精密超快三维显微与传感原理
  • 批准号:
    52375539
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
有源超表面中模式耦合的超快调控研究
  • 批准号:
    62305084
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于超快激光泵浦-探测法的压电薄膜超快光声检测机理与技术研究
  • 批准号:
    62305034
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大尺寸直接带隙半导体γ-CuX(Br/I)晶体的多形体相变法生长及其超快闪烁性能研究
  • 批准号:
    12375180
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Integrated Lithium Niobate Femtosecond Mode-Locked Lasers and Ultrafast Photonic Systems
职业:集成铌酸锂飞秒锁模激光器和超快光子系统
  • 批准号:
    2338798
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
CAREER: Photo-induced Ultrafast Electron-nuclear Dynamics in Molecules
职业:分子中光致超快电子核动力学
  • 批准号:
    2340570
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Ultrafast tracking of physiological processes in the human eye
超快速跟踪人眼的生理过程
  • 批准号:
    DP240103352
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Discovery Projects
Freeform Silica Fibre Optics via Ultrafast Laser Manufacturing
通过超快激光制造的自由形状石英光纤
  • 批准号:
    MR/X034615/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Fellowship
Ultrafast Infrared Spectroscopy Facility
超快红外光谱设备
  • 批准号:
    LE240100004
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了