Geometry - Groups and Lattices

几何 - 群和格

基本信息

  • 批准号:
    9701444
  • 负责人:
  • 金额:
    $ 26.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-08-15 至 2001-07-31
  • 项目状态:
    已结题

项目摘要

Conway 9701444 This award funds the research of Professor John Conway on knots, groups, and quadratic forms. (1) Knots are of increasing interest to a wide variety of scientists, and are intimately connected with 3-manifolds. Conway has two students who are studying them computationally in terms of his new naming system. One of the students is trying to prove a classification proof for simplex knots using Thurstonıs geometrical techniques, and the other plans to apply similar ideas to the computational study of 3-mainfolds. (2) Groups, and the Monster Group , in particular, form the second topic of study. Conway plans to develop practical algorithms for computing in the Monster and other large groups using a new and simplified construction for it. Conwayıs student Chris Simons is studying the Monster using a different technique (hyperbolic reflections), and they plan to marry the techniques. (3) Lattices and Quadratic Forms are closely related. Conwayıs student W. Schneeberger is working on a proof of their conjecture that an integer positive-definite quadratic form that represents the numbers from 1 to 290 will represent all numbers. Conway intends to continue the work (mostly geometrical and algebraic) that he and Sloane have been doing over the last decade. The proposed work on (1) and (3) should produce tables of information of great value to many workers in those fields. The work on (2) is more speculative but more fundamental. This project involves research in Algebra, Number Theory, and Knot Theory. Algebra can be though of as the study of symmetry in the abstract. As such, Algebra has direct applications to areas of physics and chemistry. In particular, the modern theory of gauge fields in physics uses algebra extensively. Number Theory has its historical roots in the study of the whole numbers, addressing such questions as those dealing with the divisibility of one whole number by another. It is among the oldest branches of mathematics and was pursued for many centuries for purely aesthetic reasons. Within the last half century, it has become indispensable tools in diverse applications in areas such as data transmission, data processing, and communication systems. Knot Theory deals with the mathematical theory of knots. This branch of mathematics has applications in biology and chemistry. In particular, biologists and mathematicians have joined forces to understand what type of knotting allows DNA to replicate so easily.
Conway 9701444该奖项为John Conway教授的研究提供了针对结,团体和二次形式的研究。 (1)对各种科学家的兴趣越来越多,并且与3个策略密切相关。康威(Conway)有两个学生,他们根据他的新命名系统在计算上研究他们。其中一名学生试图使用Thurstonıs的几何技术来证明单纯结的分类证明,而其他计划将相似的想法应用于3点毛的计算研究。 (2)组,尤其是怪物组构成了第二个研究主题。康威计划使用新的和简化的构造来开发怪物和其他大型群体中计算的实用算法。 Conwayıs学生Chris Simons正在使用不同的技术(双曲反射)研究怪物,他们计划与这些技术结合。 (3)晶格和二次形式密切相关。 Conwayıs的学生W. Schneeberger正在努力证明他们的概念,即代表1至290数字的整数积极二次形式将代表所有数字。 Conway打算继续他和Sloane在过去十年中一直在做的工作(主要是几何和代数)。关于(1)和(3)的拟议工作应为这些领域的许多工人提供巨大价值的信息表。 (2)上的工作更具投机性,但更基本。该项目涉及代数,数理论和结理论的研究。代数可以作为抽象的对称性研究。因此,代数直接应用于物理和化学领域。特别是,物理学领域的现代理论广泛使用代数。数字理论在整个数字的研究中具有历史根源,解决了诸如处理一个整数的问题的问题。它是数学最古老的分支之一,由于纯粹的审美原因而被追捕了许多世纪。在过去的半个世纪中,在数据传输,数据处理和通信系统等领域的潜水员应用程序中,它已成为必不可少的工具。结理论涉及结的数学理论。该数学分支在生物学和化学中有应用。特别是,生物学家和数学家联合起来,了解哪种类型的打结使DNA可以如此轻松地复制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Conway其他文献

SN 1993J VLBI. II. Related Changes of the Deceleration, Flux Density Decay, and Spectrum
SN 1993J VLBI。
  • DOI:
    10.1086/344198
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Bartel;M. Bietenholz;M. Rupen;A. Beasley;D. Graham;V. Altunin;T. Venturi;G. Umana;W. Cannon;John Conway
  • 通讯作者:
    John Conway
Obscuration of the Parsec-Scale Jets in the Compact Symmetric Object 1946+708
紧凑对称天体中秒差距级射流的遮挡 1946 708
  • DOI:
    10.1086/307535
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. B. Peck;A. B. Peck;G. Taylor;John Conway
  • 通讯作者:
    John Conway
AGN duty cycle estimates for the ultra-steep spectrum radio relic VLSS J1431.8+1331
超陡频谱无线电遗迹 VLSS J1431.8 1331 的 AGN 占空比估计
  • DOI:
    10.1051/0004-6361/201525632
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    6.5
  • 作者:
    A. Shulevski;R. Morganti;R. Morganti;Pieter Barthel;J. Harwood;G. Brunetti;R. Weeren;H. Röttgering;G. J. White;G. J. White;C. Horellou;M. Kunert‐Bajraszewska;M. Jamrozy;K. Chyży;E. Mahony;G. Miley;M. Brienza;L. Bîrzan;D. Rafferty;M. Brüggen;M. W. Wise;M. W. Wise;John Conway;F. Gasperin;N. Vilchez
  • 通讯作者:
    N. Vilchez
Automatic image registration of diagnostic and radiotherapy treatment planning CT head images.
诊断和放射治疗计划 CT 头部图像的自动图像配准。
Edinburgh Research Explorer Patient-reported outcomes in the ProtecT randomized trial of clinically localized prostate cancer treatments
爱丁堡研究探索者临床局部前列腺癌治疗 ProtecT 随机试验中患者报告的结果
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Lane;Chris Metcalfe;G. Young;‡. TimJ.Peters;J. Blazeby;Kerry N. L. Avery;D. Dedman;L. Down;M. Mason;David E. Neal;F. Hamdy;J. Donovan;Lynne Bonnington;Debbie Bradshaw;Emma Cooper;Elliott Pippa;Peter Herbert;Joanne Holding;Mandy Howson;Jones Teresa;Norma Lennon;Hilary Lyons;Claire Moody;Plumb Tricia;Liz O ’ Sullivan;Sarah Salter;Pauline Tidball;Thompson;Tonia Adam;Sarah Askew;S. Atkinson;T. Baynes;J. Blaikie;C. Brain;Vivienne Breen;S. Brunt;S. Bryne;Jo Bythem;Jenny Clarke;Jenny Cloete;S. Dark;Gill Davis;Rachael De;La Rue;Jane Denizot;Elspeth Dewhurst;Anna Dimes;N. Dixon;Penny Ebbs;I. Emmerson;J. Ferguson;A. Gadd;L. Geoghegan;A. Grant;Collette Grant;Catherine Gray;Rosemary Godfrey;L. Goodwin;Susie Hall;Liz Hart;A. Harvey;C. Hoult;Sarah Hawkins;S. Holling;Alastair Innes;S. Kilner;Fiona Marshall;L. Mellen;A. Moore;S. Napier;Julie Needham;Kevin Pearse;A. Pisa;Mark Rees;Elliw Richards;Lindsay Robson;J. Roxburgh;Nikki Samuel;Irene Sharkey;M. Slater;Donna Smith;Pippa Taggart;Helen Taylor;Vicky Taylor;Ayesha Thomas;Briony Tomkies;Nicola A Trewick;Claire Ward;C. Walker;Ayesha Williams;Colin Woodhouse;Elizabeth Wyber;Urological;Jonathan Aning;P. Bollina;Jim Catto;A. Doble;A. Doherty;G. Durkan;D. Gillatt;O. Hughes;Roger Kocklebergh;Anthony Kouparis;H. Kynaston;Hing Leung;P. Mariappan;Alan McNeill;E. Páez;A. Paul;R. Persad;P. Powell;S. Prescott;D. Rosario;Edward Rowe;H. Schwaibold;David N. Tulloch;Mike Wallace. Oncologists;Amit Bahl;Richard Benson;Mark Beresford;C. Ferguson;John Graham;Chris Herbert;Grahame Howard;Nick James;Alastair Law;C. Loughrey;Duncan McClaren;H. Patterson;I. Pedley;A. Robinson;S. Russell;J. Staffurth;Paul Symonds;N. Thanvi;S. Vasanthan;Paula Wilson;H. Appleby;Dominic Ash;D. Aston;Stevens Bolton;Graham Chalmers;John Conway;Nick Early;Tony Geater;Lynda Goddall;C. Heymann;D. Hicks;Lizard Jones;Susan Lamb;G. Lambert;G. Lawrence;Geraint Lewis;John Lilley;Aileen MacLeod;Pauline Massey;A. McQueen;Rollo Moore;L. Penketh;J. Potterton;Neil Roberts;H. Showler;S. Slade;Alasdair Steele;J. Swinscoe;Marie Tiffany;J. Townley;J. Treeby;Joyce Wilkinson;S. Bhattarai;Neeta Deshmukh;J. Dormer;Malee Fernando;John Goepel;David Grif fi ths;K. Grigor;Nick Mayer;Jon Oxley;Mary Robinson;Murali Varma;Anne Warren. Data Management;Susan Baker;Elizabeth Bellis‐Sheldon;Chantal Bougard;J. Bowtell;Catherine Brewer;Christopher Burton;J. Charlton;N. Christoforou;Rebecca T Clark;S. Coull;C. Croker;Rosemary Currer;Claire Daisey;G. Delaney;Rose Donohue;Jane Drew;Rebecca Farmer;Susann Fry;J. Haddow;A. Hale;S. Halpin;Belle Harris;Barbara Hattrick;Sharon Holmes;Helen Hunt;Vicky Jackson;Donna Johnson;Mandy Le Butt;J. Leworthy;Tanya Liddiatt;Alex Martin;Jainee Mauree;Susan Moore;Gill Moulam;J. Mutch;Alena Nash;Kathleen Parker;C. Pawsey;Adrian Grant;Ian Roberts;Deborah Ashby;Richard Cowan;Peter Fayers;K. Mellon;James N ’ Dow;Tim O ’ Brien;Michael Sokhal;Michael Baum;J. Adolfson;Peter Albertsen;D. Dearnaley;Fritz Schroeder;Tracy Roberts
  • 通讯作者:
    Tracy Roberts

John Conway的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Conway', 18)}}的其他基金

Groups, Lattices and Geometry
群、格子和几何
  • 批准号:
    0072839
  • 财政年份:
    2000
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Continuing Grant
Geometry of Groups & Lattices
群的几何
  • 批准号:
    9405379
  • 财政年份:
    1994
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Group Theory and Combinatorics
数学科学:群论和组合学
  • 批准号:
    9106753
  • 财政年份:
    1991
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Continuing Grant
Topics in Function Theoretic Operator Theory
函数论算子理论专题
  • 批准号:
    8922557
  • 财政年份:
    1990
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Continuing Grant
Topics in Function Theoretic Operator Theory
函数论算子理论专题
  • 批准号:
    9196044
  • 财政年份:
    1990
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Group Theory and Combinatorics
数学科学:群论和组合学
  • 批准号:
    8806445
  • 财政年份:
    1988
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Subnormal Operators and Related Topics
数学科学:次正规运算符及相关主题
  • 批准号:
    8700835
  • 财政年份:
    1987
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Group Theory and Combinatorics
数学科学:群论和组合学
  • 批准号:
    8704562
  • 财政年份:
    1987
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Standard Grant
Computer Assisted Mathematics
计算机辅助数学
  • 批准号:
    8702904
  • 财政年份:
    1987
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Special Year in Operator Theory
数学科学:算子理论特别年
  • 批准号:
    8501388
  • 财政年份:
    1985
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Standard Grant

相似国自然基金

水稻种传微生物组在植物抗病中的功能及作用机制
  • 批准号:
    32302462
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
空间转录组解析牦牛毛囊周期发育及其皮肤结构适应高寒环境的分子机制
  • 批准号:
    32302720
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于基因组数据自动化分析为后生动物类群大规模开发扩增子捕获探针的实现
  • 批准号:
    32370477
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于空间代谢组学研究海马星形细胞Mysm1介导TCA循环及ATP产能在电针抗抑郁中的作用
  • 批准号:
    82305420
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于基因组挖掘的新颖二倍半萜定向发现及逆转肿瘤多药耐药活性及作用机制研究
  • 批准号:
    82373755
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

Quantum groups and K-theory
量子群和 K 理论
  • 批准号:
    22KJ0618
  • 财政年份:
    2023
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
New developments of hypergeometric functions and hypergeometric groups
超几何函数和超几何群的新进展
  • 批准号:
    22K03365
  • 财政年份:
    2022
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Subgroups in Artin Groups and Lattices in Products of Trees
Artin 群中的子群和树积中的格
  • 批准号:
    2105548
  • 财政年份:
    2021
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Standard Grant
Research on vertex operator algebras by using Conway groups
利用康威群研究顶点算子代数
  • 批准号:
    21K03195
  • 财政年份:
    2021
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Subgroups in Artin Groups and Lattices in Products of Trees
Artin 群中的子群和树积中的格
  • 批准号:
    2203307
  • 财政年份:
    2021
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了