Geometry - Groups and Lattices

几何 - 群和格

基本信息

  • 批准号:
    9701444
  • 负责人:
  • 金额:
    $ 26.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-08-15 至 2001-07-31
  • 项目状态:
    已结题

项目摘要

Conway 9701444 This award funds the research of Professor John Conway on knots, groups, and quadratic forms. (1) Knots are of increasing interest to a wide variety of scientists, and are intimately connected with 3-manifolds. Conway has two students who are studying them computationally in terms of his new naming system. One of the students is trying to prove a classification proof for simplex knots using Thurstonıs geometrical techniques, and the other plans to apply similar ideas to the computational study of 3-mainfolds. (2) Groups, and the Monster Group , in particular, form the second topic of study. Conway plans to develop practical algorithms for computing in the Monster and other large groups using a new and simplified construction for it. Conwayıs student Chris Simons is studying the Monster using a different technique (hyperbolic reflections), and they plan to marry the techniques. (3) Lattices and Quadratic Forms are closely related. Conwayıs student W. Schneeberger is working on a proof of their conjecture that an integer positive-definite quadratic form that represents the numbers from 1 to 290 will represent all numbers. Conway intends to continue the work (mostly geometrical and algebraic) that he and Sloane have been doing over the last decade. The proposed work on (1) and (3) should produce tables of information of great value to many workers in those fields. The work on (2) is more speculative but more fundamental. This project involves research in Algebra, Number Theory, and Knot Theory. Algebra can be though of as the study of symmetry in the abstract. As such, Algebra has direct applications to areas of physics and chemistry. In particular, the modern theory of gauge fields in physics uses algebra extensively. Number Theory has its historical roots in the study of the whole numbers, addressing such questions as those dealing with the divisibility of one whole number by another. It is among the oldest branches of mathematics and was pursued for many centuries for purely aesthetic reasons. Within the last half century, it has become indispensable tools in diverse applications in areas such as data transmission, data processing, and communication systems. Knot Theory deals with the mathematical theory of knots. This branch of mathematics has applications in biology and chemistry. In particular, biologists and mathematicians have joined forces to understand what type of knotting allows DNA to replicate so easily.
康威 9701444 该奖项资助约翰·康威教授对纽结、群和二次形式的研究 (1) 纽结越来越引起众多科学家的兴趣,并且与 3 流形密切相关。康威有两个学生。一名学生正在尝试使用瑟斯顿的几何技术来证明单纯形结的分类证明,而另一名学生则计划将类似的想法应用到他的新命名系统中。 3-mainfolds(2)群,特别是 Monster Group 的计算研究,构成了第二个研究主题,计划使用新的简化的构造算法开发用于 Monster 和其他大型群计算的实用方法。康威的学生克里斯·西蒙斯正在使用一种不同的技术(双曲线反射)研究怪物,他们计划将这些技术结合起来(3)。康威的学生 W. Schneeberger 密切相关。正在证明他们的猜想:表示 1 到 290 之间的整数正定二次形式将表示所有数字。康威打算继续他和斯隆一直在做的工作(主要是几何和代数)。关于(1)和(3)的拟议工作应该会产生对这些领域的许多工作者具有重要价值的信息表。关于(2)的工作更具推测性,但更基础。代数、数论和结论可以被认为是抽象的对称性研究,因此,代数可以直接应用于物理和化学领域,特别是现代物理学中的规范场理论。数论的历史根源在于对整数的研究,解决诸如整数能否整除之类的问题。它是数学最古老的分支之一,几个世纪以来一直被人们追求纯粹的美学。后半段内的原因。世纪以来,它已成为数据传输、数据处理和通信系统等领域中不可或缺的工具。结理论涉及结的数学理论,特别是生物学和化学领域。数学家们联手研究什么类型的打结可以让 DNA 如此轻松地复制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Conway其他文献

SN 1993J VLBI. II. Related Changes of the Deceleration, Flux Density Decay, and Spectrum
SN 1993J VLBI。
  • DOI:
    10.1086/344198
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Bartel;M. Bietenholz;M. Rupen;A. Beasley;D. Graham;V. Altunin;T. Venturi;G. Umana;W. Cannon;John Conway
  • 通讯作者:
    John Conway
Obscuration of the Parsec-Scale Jets in the Compact Symmetric Object 1946+708
紧凑对称天体中秒差距级射流的遮挡 1946 708
  • DOI:
    10.1086/307535
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. B. Peck;A. B. Peck;G. Taylor;John Conway
  • 通讯作者:
    John Conway
Discovery of two new methanol masers in NGC 7538
NGC 7538 中发现两个新的甲醇脉泽
  • DOI:
    10.1051/0004-6361:200600006
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    6.5
  • 作者:
    M. Pestalozzi;V. Minier;V. Minier;Frédérique Motte;John Conway
  • 通讯作者:
    John Conway
AGN duty cycle estimates for the ultra-steep spectrum radio relic VLSS J1431.8+1331
超陡频谱无线电遗迹 VLSS J1431.8 1331 的 AGN 占空比估计
  • DOI:
    10.1051/0004-6361/201525632
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    6.5
  • 作者:
    A. Shulevski;R. Morganti;R. Morganti;Pieter Barthel;J. Harwood;G. Brunetti;R. Weeren;H. Röttgering;G. J. White;G. J. White;C. Horellou;M. Kunert‐Bajraszewska;M. Jamrozy;K. Chyży;E. Mahony;G. Miley;M. Brienza;L. Bîrzan;D. Rafferty;M. Brüggen;M. W. Wise;M. W. Wise;John Conway;F. Gasperin;N. Vilchez
  • 通讯作者:
    N. Vilchez
Automatic image registration of diagnostic and radiotherapy treatment planning CT head images.
诊断和放射治疗计划 CT 头部图像的自动图像配准。

John Conway的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Conway', 18)}}的其他基金

Groups, Lattices and Geometry
群、格子和几何
  • 批准号:
    0072839
  • 财政年份:
    2000
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Continuing Grant
Geometry of Groups & Lattices
群的几何
  • 批准号:
    9405379
  • 财政年份:
    1994
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Group Theory and Combinatorics
数学科学:群论和组合学
  • 批准号:
    9106753
  • 财政年份:
    1991
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Continuing Grant
Topics in Function Theoretic Operator Theory
函数论算子理论专题
  • 批准号:
    8922557
  • 财政年份:
    1990
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Continuing Grant
Topics in Function Theoretic Operator Theory
函数论算子理论专题
  • 批准号:
    9196044
  • 财政年份:
    1990
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Group Theory and Combinatorics
数学科学:群论和组合学
  • 批准号:
    8806445
  • 财政年份:
    1988
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Subnormal Operators and Related Topics
数学科学:次正规运算符及相关主题
  • 批准号:
    8700835
  • 财政年份:
    1987
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Group Theory and Combinatorics
数学科学:群论和组合学
  • 批准号:
    8704562
  • 财政年份:
    1987
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Standard Grant
Computer Assisted Mathematics
计算机辅助数学
  • 批准号:
    8702904
  • 财政年份:
    1987
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Special Year in Operator Theory
数学科学:算子理论特别年
  • 批准号:
    8501388
  • 财政年份:
    1985
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Standard Grant

相似国自然基金

信息交流对异质性团体感知觉决策的影响研究:基于认知计算的动态优势表征
  • 批准号:
    32300910
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于分子互作研究多酚结构差异对面团体系面筋蛋白网络形成的调控机制
  • 批准号:
    32301998
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
团体创新中的观念生成路径及其神经基础研究
  • 批准号:
    32300900
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
位置社交网络中天际线团体搜索技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
面向小团体的多模态连续情感识别研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

Quantum groups and K-theory
量子群和 K 理论
  • 批准号:
    22KJ0618
  • 财政年份:
    2023
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
New developments of hypergeometric functions and hypergeometric groups
超几何函数和超几何群的新进展
  • 批准号:
    22K03365
  • 财政年份:
    2022
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Subgroups in Artin Groups and Lattices in Products of Trees
Artin 群中的子群和树积中的格
  • 批准号:
    2105548
  • 财政年份:
    2021
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Standard Grant
Research on vertex operator algebras by using Conway groups
利用康威群研究顶点算子代数
  • 批准号:
    21K03195
  • 财政年份:
    2021
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Subgroups in Artin Groups and Lattices in Products of Trees
Artin 群中的子群和树积中的格
  • 批准号:
    2203307
  • 财政年份:
    2021
  • 资助金额:
    $ 26.1万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了