Mathematical Sciences: Subnormal Operators and Related Topics
数学科学:次正规运算符及相关主题
基本信息
- 批准号:8700835
- 负责人:
- 金额:$ 6.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1987
- 资助国家:美国
- 起止时间:1987-06-15 至 1989-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Operator theory is a central discipline in Modern Analysis. Its origins lie in the study of mathematical physics and partial differential equations in the early twentieth century. Thus, it was seen that numerous physical problems in the theory of equilibria, vibration, quantum theory, etc. could be studied productively via the integral equations that model the phenomena. So it has been, that from the fertile minds of Hilbert, von Neumann, and other giants that the subject of operator theory has grown to a central position in such investigations, and in core mathematics as well. At the heart of this methodology is the deep investigation of the spectrum of an operator and the concommitant study of its invariant subspaces. For the so-called self-adjoint operators, this theory is now a standard technique throughout analysis, and the spectral theorem provides the necessary building blocks for all such operators. Although not quite as complete, spectral theory is significantly well understood for an extensive generalization of the self-adjoint case; viz., the "normal" operators. The current frontier, therefore, in the study of this structure theory rests in the non-normal theory. Professors Conway has long been a leader in the study of subnormal operators, a broad class of operators that arise in applications, and for which there is enough residual normal information to attempt a deeper understanding of their inherent structure. Recent results, suchas the fact that subnormal operators are reflexive and have invariant subspaces, have given an added impetus to the study of their spectral properties. Since many explicit operators that arise in complex function theory, differential geometry, and approximation theory are subnormal, there is a broad range of developing interaction. Professor Conway will study subnormal operators that arise naturally in actions on Hardy spaces, thereby exploring the interaction with function theory. He will also investigate the internal structure theory of subnormal operators, with particular consideration of unitary equivalence, bundle shifts, and the relationship with general operator theory.
操作者理论是现代分析中的中心学科。 它的起源在于20世纪初期对数学物理学和部分微分方程的研究。 因此,可以看到,可以通过模拟现象的积分方程来有效地研究平衡,振动,量子理论等的许多物理问题。 因此,从希尔伯特(Hilbert),冯·诺伊曼(von Neumann)和其他巨人的肥沃思想中,操作者理论的主题在此类调查和核心数学方面也发展到了中心地位。 这种方法的核心是对操作员光谱的深入研究以及对其不变子空间的同一研究。 对于所谓的自动接合运算符,该理论现在是整个分析过程中的标准技术,光谱定理为所有此类操作员提供了必要的构建块。 尽管不太完整,但是对于自我偶相病例的广泛概括,光谱理论已得到充分理解。即“正常”操作员。 因此,在对该结构理论的研究中,当前的边界取决于非正常理论。 Conway教授长期以来一直是亚正态操作员研究的领导者,正常运营商,在应用中出现的广泛运营商,并且有足够的残留正常信息来尝试更深入地了解其固有结构。 最近的结果是,亚正态算子是反身且具有不变子空间的事实,它为其光谱特性的研究增加了动力。 由于许多在复杂函数理论中出现的显式运算符,差异几何学和近似理论是亚正式的,因此存在广泛的发展相互作用。 Conway教授将研究自然出现在Hardy空间的行动中的亚正态操作员,从而探索与功能理论的相互作用。 他还将研究亚正态操作员的内部结构理论,并特别考虑了单一等效性,捆绑转移以及与普通运营商理论的关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Conway其他文献
SN 1993J VLBI. II. Related Changes of the Deceleration, Flux Density Decay, and Spectrum
SN 1993J VLBI。
- DOI:
10.1086/344198 - 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
N. Bartel;M. Bietenholz;M. Rupen;A. Beasley;D. Graham;V. Altunin;T. Venturi;G. Umana;W. Cannon;John Conway - 通讯作者:
John Conway
Obscuration of the Parsec-Scale Jets in the Compact Symmetric Object 1946+708
紧凑对称天体中秒差距级射流的遮挡 1946 708
- DOI:
10.1086/307535 - 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
A. B. Peck;A. B. Peck;G. Taylor;John Conway - 通讯作者:
John Conway
AGN duty cycle estimates for the ultra-steep spectrum radio relic VLSS J1431.8+1331
超陡频谱无线电遗迹 VLSS J1431.8 1331 的 AGN 占空比估计
- DOI:
10.1051/0004-6361/201525632 - 发表时间:
2015 - 期刊:
- 影响因子:6.5
- 作者:
A. Shulevski;R. Morganti;R. Morganti;Pieter Barthel;J. Harwood;G. Brunetti;R. Weeren;H. Röttgering;G. J. White;G. J. White;C. Horellou;M. Kunert‐Bajraszewska;M. Jamrozy;K. Chyży;E. Mahony;G. Miley;M. Brienza;L. Bîrzan;D. Rafferty;M. Brüggen;M. W. Wise;M. W. Wise;John Conway;F. Gasperin;N. Vilchez - 通讯作者:
N. Vilchez
Automatic image registration of diagnostic and radiotherapy treatment planning CT head images.
诊断和放射治疗计划 CT 头部图像的自动图像配准。
- DOI:
- 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
Jaap Vaarkamp;David C Barber;John Conway;Martin H Robinson - 通讯作者:
Martin H Robinson
Edinburgh Research Explorer Patient-reported outcomes in the ProtecT randomized trial of clinically localized prostate cancer treatments
爱丁堡研究探索者临床局部前列腺癌治疗 ProtecT 随机试验中患者报告的结果
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
A. Lane;Chris Metcalfe;G. Young;‡. TimJ.Peters;J. Blazeby;Kerry N. L. Avery;D. Dedman;L. Down;M. Mason;David E. Neal;F. Hamdy;J. Donovan;Lynne Bonnington;Debbie Bradshaw;Emma Cooper;Elliott Pippa;Peter Herbert;Joanne Holding;Mandy Howson;Jones Teresa;Norma Lennon;Hilary Lyons;Claire Moody;Plumb Tricia;Liz O ’ Sullivan;Sarah Salter;Pauline Tidball;Thompson;Tonia Adam;Sarah Askew;S. Atkinson;T. Baynes;J. Blaikie;C. Brain;Vivienne Breen;S. Brunt;S. Bryne;Jo Bythem;Jenny Clarke;Jenny Cloete;S. Dark;Gill Davis;Rachael De;La Rue;Jane Denizot;Elspeth Dewhurst;Anna Dimes;N. Dixon;Penny Ebbs;I. Emmerson;J. Ferguson;A. Gadd;L. Geoghegan;A. Grant;Collette Grant;Catherine Gray;Rosemary Godfrey;L. Goodwin;Susie Hall;Liz Hart;A. Harvey;C. Hoult;Sarah Hawkins;S. Holling;Alastair Innes;S. Kilner;Fiona Marshall;L. Mellen;A. Moore;S. Napier;Julie Needham;Kevin Pearse;A. Pisa;Mark Rees;Elliw Richards;Lindsay Robson;J. Roxburgh;Nikki Samuel;Irene Sharkey;M. Slater;Donna Smith;Pippa Taggart;Helen Taylor;Vicky Taylor;Ayesha Thomas;Briony Tomkies;Nicola A Trewick;Claire Ward;C. Walker;Ayesha Williams;Colin Woodhouse;Elizabeth Wyber;Urological;Jonathan Aning;P. Bollina;Jim Catto;A. Doble;A. Doherty;G. Durkan;D. Gillatt;O. Hughes;Roger Kocklebergh;Anthony Kouparis;H. Kynaston;Hing Leung;P. Mariappan;Alan McNeill;E. Páez;A. Paul;R. Persad;P. Powell;S. Prescott;D. Rosario;Edward Rowe;H. Schwaibold;David N. Tulloch;Mike Wallace. Oncologists;Amit Bahl;Richard Benson;Mark Beresford;C. Ferguson;John Graham;Chris Herbert;Grahame Howard;Nick James;Alastair Law;C. Loughrey;Duncan McClaren;H. Patterson;I. Pedley;A. Robinson;S. Russell;J. Staffurth;Paul Symonds;N. Thanvi;S. Vasanthan;Paula Wilson;H. Appleby;Dominic Ash;D. Aston;Stevens Bolton;Graham Chalmers;John Conway;Nick Early;Tony Geater;Lynda Goddall;C. Heymann;D. Hicks;Lizard Jones;Susan Lamb;G. Lambert;G. Lawrence;Geraint Lewis;John Lilley;Aileen MacLeod;Pauline Massey;A. McQueen;Rollo Moore;L. Penketh;J. Potterton;Neil Roberts;H. Showler;S. Slade;Alasdair Steele;J. Swinscoe;Marie Tiffany;J. Townley;J. Treeby;Joyce Wilkinson;S. Bhattarai;Neeta Deshmukh;J. Dormer;Malee Fernando;John Goepel;David Grif fi ths;K. Grigor;Nick Mayer;Jon Oxley;Mary Robinson;Murali Varma;Anne Warren. Data Management;Susan Baker;Elizabeth Bellis‐Sheldon;Chantal Bougard;J. Bowtell;Catherine Brewer;Christopher Burton;J. Charlton;N. Christoforou;Rebecca T Clark;S. Coull;C. Croker;Rosemary Currer;Claire Daisey;G. Delaney;Rose Donohue;Jane Drew;Rebecca Farmer;Susann Fry;J. Haddow;A. Hale;S. Halpin;Belle Harris;Barbara Hattrick;Sharon Holmes;Helen Hunt;Vicky Jackson;Donna Johnson;Mandy Le Butt;J. Leworthy;Tanya Liddiatt;Alex Martin;Jainee Mauree;Susan Moore;Gill Moulam;J. Mutch;Alena Nash;Kathleen Parker;C. Pawsey;Adrian Grant;Ian Roberts;Deborah Ashby;Richard Cowan;Peter Fayers;K. Mellon;James N ’ Dow;Tim O ’ Brien;Michael Sokhal;Michael Baum;J. Adolfson;Peter Albertsen;D. Dearnaley;Fritz Schroeder;Tracy Roberts - 通讯作者:
Tracy Roberts
John Conway的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Conway', 18)}}的其他基金
Mathematical Sciences: Group Theory and Combinatorics
数学科学:群论和组合学
- 批准号:
9106753 - 财政年份:1991
- 资助金额:
$ 6.07万 - 项目类别:
Continuing Grant
Topics in Function Theoretic Operator Theory
函数论算子理论专题
- 批准号:
8922557 - 财政年份:1990
- 资助金额:
$ 6.07万 - 项目类别:
Continuing Grant
Topics in Function Theoretic Operator Theory
函数论算子理论专题
- 批准号:
9196044 - 财政年份:1990
- 资助金额:
$ 6.07万 - 项目类别:
Continuing grant
Mathematical Sciences: Group Theory and Combinatorics
数学科学:群论和组合学
- 批准号:
8806445 - 财政年份:1988
- 资助金额:
$ 6.07万 - 项目类别:
Continuing Grant
Mathematical Sciences: Group Theory and Combinatorics
数学科学:群论和组合学
- 批准号:
8704562 - 财政年份:1987
- 资助金额:
$ 6.07万 - 项目类别:
Standard Grant
Mathematical Sciences: Special Year in Operator Theory
数学科学:算子理论特别年
- 批准号:
8501388 - 财政年份:1985
- 资助金额:
$ 6.07万 - 项目类别:
Standard Grant
相似国自然基金
实施科学视角下食管癌加速康复外科证据转化障碍机制与多元靶向干预策略研究
- 批准号:82303925
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
游戏化mHealth干预模式下精神障碍出院患者自杀风险管理策略的实施科学研究——基于多阶段优化策略
- 批准号:72374095
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
基于成分转化-体内时空分布-空间代谢组学整体耦联阐释女贞子蒸制的科学内涵
- 批准号:82374041
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
虚拟实验环境下科学探究过程自动监测与适应性反馈研究
- 批准号:62377005
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于胆汁酸/CCL2/CCR2+TAMs代谢免疫穿越调控探讨乳腺癌“肝——乳”轴科学内涵与干预研究
- 批准号:82374446
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
Mathematical Sciences: Subnormal Operators and Banach Spaces of Holomorphic Functions
数学科学:次正规算子和全纯函数的 Banach 空间
- 批准号:
9531917 - 财政年份:1996
- 资助金额:
$ 6.07万 - 项目类别:
Continuing Grant
Mathematical Sciences: Joint K-spectral Sets and Subnormal Operators
数学科学:联合 K 谱集和次正规算子
- 批准号:
8701498 - 财政年份:1987
- 资助金额:
$ 6.07万 - 项目类别:
Continuing Grant
Mathematical Sciences: Theory and Applications of Subnormal Operators
数学科学:次正规算子的理论与应用
- 批准号:
8700942 - 财政年份:1987
- 资助金额:
$ 6.07万 - 项目类别:
Continuing Grant
Mathematical Sciences: Subnormal Operators
数学科学:次正规运算符
- 批准号:
8320426 - 财政年份:1984
- 资助金额:
$ 6.07万 - 项目类别:
Continuing Grant
Subnormal Operators (Mathematical Sciences)
次正规算子(数学科学)
- 批准号:
8121201 - 财政年份:1982
- 资助金额:
$ 6.07万 - 项目类别:
Standard Grant