Mathematical Sciences: Singular Continuous Spectum and Localization Type Effects if Disordered Systems
数学科学:无序系统的奇异连续谱和局域化效应
基本信息
- 批准号:9501265
- 负责人:
- 金额:$ 4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1995
- 资助国家:美国
- 起止时间:1995-07-01 至 1997-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9501265 Jitomirskaya This research involves Schrodinger operators with singular continuous spectrum, localization type effects for Sahrodinger operators and for quantum spin systems, percolation and contact processes in disordered environments. The main objective of the research related to the singular continuous spectrum is to study the relation between the spectral properties and longtime behavior of the generalized eigenfunctions, in particular between certain growth properties of generalized eigenfunctions, the Hausdorff dimension of the spectral measure, and stability or instability of singular continuous spectrum with respect to rank one perturbations. Another goal of the proposed research is to study singular continuous spectrum for models where singular spectrum may appear for the critical values (intervals) of the parameters, serving as a transition from absolutely continuous to pure point spectrum. The main objective of the research related to localization is to develop methods of proving localization for ergodic families of operators (disordered systems) with deterministic disorder. Also general uniformity properties of localization and relation to quantum dynamics will be studied. The proposed research is centered around the fundamental properties of disordered and singular systems that are used in modeling of many micro and macro effects: from quantum localization to earthquake theory. The proposed topics include studying properties of highly disordered systems of Quantum ald Statistical Mechanics and of systems at critical levels of disorder, that demonstrate highly unstable behavior. ***
9501265 Jitomirskaya 这项研究涉及具有奇异连续谱的薛定谔算子、萨罗定格算子和量子自旋系统的局域化效应、无序环境中的渗流和接触过程。与奇异连续谱相关的研究的主要目的是研究广义本征函数的谱性质和长期行为之间的关系,特别是广义本征函数的某些增长性质、谱测度的豪斯多夫维数和稳定性或奇异连续谱相对于一级扰动的不稳定性。该研究的另一个目标是研究模型的奇异连续谱,其中奇异谱可能出现在参数的临界值(区间)上,作为从绝对连续谱到纯点谱的过渡。与定位相关的研究的主要目标是开发证明具有确定性无序的算子遍历族(无序系统)定位的方法。还将研究局域化的一般均匀性特性以及与量子动力学的关系。 拟议的研究以无序和奇异系统的基本特性为中心,这些系统用于对许多微观和宏观效应进行建模:从量子局域化到地震理论。拟议的主题包括研究量子统计力学的高度无序系统的特性以及处于临界无序水平的系统的特性,这些系统表现出高度不稳定的行为。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Svetlana Jitomirskaya其他文献
Second phase transition line
第二阶段过渡线
- DOI:
10.1007/s00208-017-1543-1 - 发表时间:
2016-08 - 期刊:
- 影响因子:1.4
- 作者:
Artur Avila;Svetlana Jitomirskaya;Qi Zhou - 通讯作者:
Qi Zhou
Anderson localization for multi-frequency quasi-periodic operators on Z^d
Z^d 上多频准周期算子的安德森定位
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Svetlana Jitomirskaya;Wencai Liu;Yunfeng Shi - 通讯作者:
Yunfeng Shi
Singular Continuous Spectrum for Singular Potentials
奇异势的奇异连续谱
- DOI:
10.1007/s00220-016-2823-4 - 发表时间:
2016-04 - 期刊:
- 影响因子:2.4
- 作者:
Svetlana Jitomirskaya;Fan Yang - 通讯作者:
Fan Yang
Svetlana Jitomirskaya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Svetlana Jitomirskaya', 18)}}的其他基金
Spectral Transitions and Critical Phenomena
光谱跃迁和临界现象
- 批准号:
2155211 - 财政年份:2022
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Non-Perturbative Analysis for Multi-Dimensional Quasiperiodic Systems
FRG:协作研究:多维准周期系统的非微扰分析
- 批准号:
2052899 - 财政年份:2021
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Schrodinger Operators with Spectral Transitions
具有谱跃迁的薛定谔算子
- 批准号:
1901462 - 财政年份:2019
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Spectral theory of ergodic Schrodinger operators and related models
遍历薛定谔算子的谱论及相关模型
- 批准号:
1401204 - 财政年份:2014
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Spectral theory of ergodic Schrodinger operators and related models
遍历薛定谔算子的谱论及相关模型
- 批准号:
1101578 - 财政年份:2011
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Spectral Properties of Ergodic Schroedinger Operators
遍历薛定谔算子的谱性质
- 批准号:
0601081 - 财政年份:2006
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Spectral and Transport Theory of Schrodinger Operators
薛定谔算子的谱与输运理论
- 批准号:
0300974 - 财政年份:2003
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Spectral and Transport Theory of Schrodinger Operators
薛定谔算子的谱与输运理论
- 批准号:
0070755 - 财政年份:2000
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Spectral Theory of Schrodinger Operators and Localization Type Effects in Disordered Environments
无序环境中薛定谔算子的谱理论和局域型效应
- 批准号:
9706443 - 财政年份:1997
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
相似国自然基金
基于可解释机器学习的科学知识角色转变预测研究
- 批准号:72304108
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向论文引用与科研合作的"科学学"规律中的国别特征研究
- 批准号:72374173
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
国际应用系统分析研究学会2023暑期青年科学家项目
- 批准号:
- 批准年份:2023
- 资助金额:4.5 万元
- 项目类别:
战略与管理研究类:电气科学与工程学科研究方向与关键词优化
- 批准号:52342702
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:专项基金项目
X9R高温多层陶瓷电容器(MLCC)中关键科学与技术难题研究
- 批准号:52302276
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Research on coverings of curves and toric varieties through Weierstrass points
基于Weierstrass点的曲线和复曲面簇覆盖研究
- 批准号:
17540046 - 财政年份:2005
- 资助金额:
$ 4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Sciences: RUI: Minimal Surfaces, Clusters, and Singular Geometry
数学科学:RUI:最小曲面、簇和奇异几何
- 批准号:
9625641 - 财政年份:1996
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Mathematical Sciences: "Asymptotic & Singular Perturbation Methods for Bifurcation Problems with Applications"
数学科学:“渐近
- 批准号:
9625843 - 财政年份:1996
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Mathematical Sciences: Oscillatory Integrals, Singular Integrals, and Their Applications
数学科学:振荡积分、奇异积分及其应用
- 批准号:
9622979 - 财政年份:1996
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Singular Integrals and Fourier Integrals
数学科学:奇异积分和傅立叶积分
- 批准号:
9531806 - 财政年份:1996
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant