Spectral Properties of Ergodic Schroedinger Operators
遍历薛定谔算子的谱性质
基本信息
- 批准号:0601081
- 负责人:
- 金额:$ 26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-01 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Spectral Properties of Ergodic Schroedinger OperatorsAbstract of Proposed ResearchSvetlana Jitomirskaya This project is to study spectra and localization type effects for ergodic Schroedinger operators and the study of anomalous absolutely continuous spectrum and anomalous quantum transport in the quasiperiodic and Anderson model-type settings. It is also planned to study several models related to Bloch electrons in constant and/or random magnetic fields. The project involves the continuing development of non-perturbative methods both for the proofs of localization and other related properties as well as for the study of absolutely continuous spectrum. Other important objectives are the study of issues related to Cantor spectra of quasiperiodic operators, it's occurrence, prevalence, and scaling properties, and the development of smooth (rather than analytic) methods.The proposed research investigates the anomalous spectral and diffusive properties of quasiperiodic and other deterministic and random structures. This is basic research on the fundamental properties of disordered systems that serve as models of systems with impurities. Quasiperiodic operators provide central or important models for integer quantum Hall effect, experimental quasicrystals, and quantum chaos theory. The development of the rigorous theory is expected to contribute to the understanding of all three phenomena, and in particular, may lead to finding new materials with desired physical properties. Disordered systems are also used in modeling many other micro and macro effects: from quantum localization to earthquakes. The proposed topics include studying properties of both highly and weakly disordered systems of Quantum Mechanics that demonstrate certain anomalous behavior.
遍历薛定谔算子的光谱性质拟议研究摘要Svetlana Jitomirskaya 该项目旨在研究遍历薛定谔算子的光谱和局域化效应,以及准周期和安德森模型类型设置中反常绝对连续光谱和反常量子输运的研究。还计划研究与恒定和/或随机磁场中的布洛赫电子相关的几种模型。 该项目涉及非微扰方法的持续开发,用于定位和其他相关属性的证明以及绝对连续谱的研究。其他重要目标是研究与准周期算子的康托谱相关的问题,它的出现、普遍性和标度特性,以及平滑(而不是解析)方法的开发。本研究调查了准周期算子的反常谱和扩散特性。其他确定性和随机结构。这是对作为含杂质系统模型的无序系统基本性质的基础研究。准周期算子为整数量子霍尔效应、实验准晶体和量子混沌理论提供了中心或重要的模型。严格理论的发展预计将有助于理解所有这三种现象,特别是可能导致寻找具有所需物理性质的新材料。 无序系统还用于模拟许多其他微观和宏观效应:从量子局域化到地震。拟议的主题包括研究量子力学的高度无序和弱无序系统的特性,这些系统表现出某些异常行为。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Svetlana Jitomirskaya其他文献
Second phase transition line
第二阶段过渡线
- DOI:
10.1007/s00208-017-1543-1 - 发表时间:
2016-08 - 期刊:
- 影响因子:1.4
- 作者:
Artur Avila;Svetlana Jitomirskaya;Qi Zhou - 通讯作者:
Qi Zhou
Anderson localization for multi-frequency quasi-periodic operators on Z^d
Z^d 上多频准周期算子的安德森定位
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Svetlana Jitomirskaya;Wencai Liu;Yunfeng Shi - 通讯作者:
Yunfeng Shi
Singular Continuous Spectrum for Singular Potentials
奇异势的奇异连续谱
- DOI:
10.1007/s00220-016-2823-4 - 发表时间:
2016-04 - 期刊:
- 影响因子:2.4
- 作者:
Svetlana Jitomirskaya;Fan Yang - 通讯作者:
Fan Yang
Svetlana Jitomirskaya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Svetlana Jitomirskaya', 18)}}的其他基金
Spectral Transitions and Critical Phenomena
光谱跃迁和临界现象
- 批准号:
2155211 - 财政年份:2022
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Non-Perturbative Analysis for Multi-Dimensional Quasiperiodic Systems
FRG:协作研究:多维准周期系统的非微扰分析
- 批准号:
2052899 - 财政年份:2021
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Schrodinger Operators with Spectral Transitions
具有谱跃迁的薛定谔算子
- 批准号:
1901462 - 财政年份:2019
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Spectral theory of ergodic Schrodinger operators and related models
遍历薛定谔算子的谱论及相关模型
- 批准号:
1401204 - 财政年份:2014
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Spectral theory of ergodic Schrodinger operators and related models
遍历薛定谔算子的谱论及相关模型
- 批准号:
1101578 - 财政年份:2011
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Spectral and Transport Theory of Schrodinger Operators
薛定谔算子的谱与输运理论
- 批准号:
0300974 - 财政年份:2003
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Spectral and Transport Theory of Schrodinger Operators
薛定谔算子的谱与输运理论
- 批准号:
0070755 - 财政年份:2000
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Spectral Theory of Schrodinger Operators and Localization Type Effects in Disordered Environments
无序环境中薛定谔算子的谱理论和局域型效应
- 批准号:
9706443 - 财政年份:1997
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Mathematical Sciences: Singular Continuous Spectum and Localization Type Effects if Disordered Systems
数学科学:无序系统的奇异连续谱和局域化效应
- 批准号:
9501265 - 财政年份:1995
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
相似国自然基金
植被群落演替对河道水流结构和纵向离散特性影响机制研究
- 批准号:52309088
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于液态金属弹性体的磁/温控导体绝缘体转变特性和机理研究
- 批准号:52301193
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
根际固氮菌类群的功能特性及其残体对土壤有机碳周转的影响机制
- 批准号:42377127
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
层工程诱导的Bi5Ti3FeO15基弛豫铁电薄膜储能特性研究
- 批准号:12364016
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
深层高温高压页岩水力压裂特性与诱发地震机理研究
- 批准号:42320104003
- 批准年份:2023
- 资助金额:210 万元
- 项目类别:国际(地区)合作与交流项目
相似海外基金
Ergodic Properties of Smooth Systems on Manifolds
流形上光滑系统的遍历性质
- 批准号:
2247572 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
CAS: Estimates of the decay of diffusion induced flows in strongly stratified fluids and ergodic mixing properties of solutes driven by randomly moving walls in viscous fluids.
CAS:对强分层流体中扩散诱导流的衰减以及粘性流体中随机移动壁驱动的溶质的遍历混合特性的估计。
- 批准号:
2308063 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Ergodic properties of infinite dimensional dynamical systems
无限维动力系统的遍历性质
- 批准号:
2888861 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Studentship
Topics in Smooth Ergodic Theory: Stochastic Properties, Thermodynamic Formalism, Coexistence
平滑遍历理论主题:随机性质、热力学形式主义、共存
- 批准号:
2153053 - 财政年份:2022
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Ergodic Properties of Smooth Systems on Manifolds
流形上光滑系统的遍历性质
- 批准号:
1956310 - 财政年份:2020
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant