Spectral Transitions and Critical Phenomena

光谱跃迁和临界现象

基本信息

  • 批准号:
    2155211
  • 负责人:
  • 金额:
    $ 72.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

The research will focus on the anomalous spectral properties of quasiperiodic (almost but not quite periodic) structures. Quasiperiodic operators provide central or important models for integer quantum Hall effect, experimental quasicrystals, and the quantum chaos theory. Quasiperiodic systems are also used in modeling many other micro and macro effects: from quantum localization to earthquakes. Other deterministic aperiodic (irregular) structures will be of interest as well. The planned development of the rigorous theory is expected to contribute to the understanding of all the above phenomena and may lead to finding new materials with desired physical properties. The topics will include studying properties of quantum mechanical systems with both strong and weak disorder (many and few impurities, respectively), which demonstrate certain anomalous behavior. An integral part of the project will consist of educating graduate students and other young researchers. Related outreach activities will take place.The project consists of several parts, including the connection of dual Lyapunov exponents to characterization of spectra and spectral components, proof of the ubiquity of arithmetic spectral transitions and universal hierarchical structures of eigenfunctions for analytic quasiperiodic operators, proof of extended states for multidimensional quasiperiodic operators, studies of the critical phenomena and of the ‘two interlacing particles’ effect. Other important objectives will be the study of issues related to certain models of quantum chaos. The project will involve the continuing development of non-perturbative methods for the proofs of localization-type effects, as well as for the study of absolutely continuous spectrum.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究将重点关注准周期(几乎但不完全周期)结构的反常光谱特性,准周期算子为整数量子霍尔效应、实验准晶体提供了核心或重要模型,并且量子混沌理论也用于建模许多。其他微观和宏观效应:从量子局域化到地震,其他确定性非周期性(不规则)结构也将引起人们的兴趣。理论预计将有助于理解所有上述现象,并可能导致寻找具有所需物理性质的新材料。这些主题将包括研究具有强无序和弱无序(分别为大量和少量杂质)的量子力学系统的性质,该项目的一个组成部分将包括对研究生和其他年轻研究人员进行教育。该项目由几个部分组成,包括双李雅普诺夫指数与光谱和光谱表征的联系。组件、证明算术谱跃迁的普遍性和解析准周期算子本征函数的通用层次结构的证明,多维准周期算子的扩展状态的证明,临界现象和“两个交错粒子”效应的研究其他重要目标将是研究。该项目将涉及持续开发用于证明局域型效应以及研究绝对连续的非微扰方法。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Growth of the Wang-Casati-Prosen counter in an integrable billiard
  • DOI:
    10.21468/scipostphys.14.2.017
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Zaijong Hwang;C. Marx;J. Seaward;S. Jitomirskaya;M. Olshanii
  • 通讯作者:
    Zaijong Hwang;C. Marx;J. Seaward;S. Jitomirskaya;M. Olshanii
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Svetlana Jitomirskaya其他文献

Second phase transition line
第二阶段过渡线
  • DOI:
    10.1007/s00208-017-1543-1
  • 发表时间:
    2016-08
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Artur Avila;Svetlana Jitomirskaya;Qi Zhou
  • 通讯作者:
    Qi Zhou
Anderson localization for multi-frequency quasi-periodic operators on Z^d
Z^d 上多频准周期算子的安德森定位
Singular Continuous Spectrum for Singular Potentials
奇异势的奇异连续谱

Svetlana Jitomirskaya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Svetlana Jitomirskaya', 18)}}的其他基金

FRG: Collaborative Research: Non-Perturbative Analysis for Multi-Dimensional Quasiperiodic Systems
FRG:协作研究:多维准周期系统的非微扰分析
  • 批准号:
    2052899
  • 财政年份:
    2021
  • 资助金额:
    $ 72.5万
  • 项目类别:
    Standard Grant
Schrodinger Operators with Spectral Transitions
具有谱跃迁的薛定谔算子
  • 批准号:
    1901462
  • 财政年份:
    2019
  • 资助金额:
    $ 72.5万
  • 项目类别:
    Standard Grant
Spectral theory of ergodic Schrodinger operators and related models
遍历薛定谔算子的谱论及相关模型
  • 批准号:
    1401204
  • 财政年份:
    2014
  • 资助金额:
    $ 72.5万
  • 项目类别:
    Continuing Grant
Spectral theory of ergodic Schrodinger operators and related models
遍历薛定谔算子的谱论及相关模型
  • 批准号:
    1101578
  • 财政年份:
    2011
  • 资助金额:
    $ 72.5万
  • 项目类别:
    Continuing Grant
Spectral Properties of Ergodic Schroedinger Operators
遍历薛定谔算子的谱性质
  • 批准号:
    0601081
  • 财政年份:
    2006
  • 资助金额:
    $ 72.5万
  • 项目类别:
    Continuing Grant
Spectral and Transport Theory of Schrodinger Operators
薛定谔算子的谱与输运理论
  • 批准号:
    0300974
  • 财政年份:
    2003
  • 资助金额:
    $ 72.5万
  • 项目类别:
    Continuing Grant
Spectral and Transport Theory of Schrodinger Operators
薛定谔算子的谱与输运理论
  • 批准号:
    0070755
  • 财政年份:
    2000
  • 资助金额:
    $ 72.5万
  • 项目类别:
    Continuing Grant
Spectral Theory of Schrodinger Operators and Localization Type Effects in Disordered Environments
无序环境中薛定谔算子的谱理论和局域型效应
  • 批准号:
    9706443
  • 财政年份:
    1997
  • 资助金额:
    $ 72.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Singular Continuous Spectum and Localization Type Effects if Disordered Systems
数学科学:无序系统的奇异连续谱和局域化效应
  • 批准号:
    9501265
  • 财政年份:
    1995
  • 资助金额:
    $ 72.5万
  • 项目类别:
    Standard Grant

相似国自然基金

非晶过渡金属多硫化物正极材料穿梭效应消除机制及其构效关系
  • 批准号:
    22309087
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
原子层沉积制备分子筛限域过渡金属催化甲醇水蒸气重整制氢
  • 批准号:
    22302098
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
过渡金属单原子/亚纳米团簇复合催化剂的构筑及其锂硫电池性能研究
  • 批准号:
    52302261
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
过渡金属磷化物高熵化制备及其电催化析氢性能研究
  • 批准号:
    52372170
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
过渡金属配合物-聚合物复合体系提升协同催化效率
  • 批准号:
    22371063
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Lace-expansion approach towards phase transitions, critical phenomena and constructive field theory
相变、临界现象和相长场论的花边展开方法
  • 批准号:
    23K03143
  • 财政年份:
    2023
  • 资助金额:
    $ 72.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Transitions Among Discrete Clinical States During ICU Stays in Patients with SARS-CoV-2 Pneumonia
SARS-CoV-2 肺炎患者入住 ICU 期间离散临床状态的转变
  • 批准号:
    10537554
  • 财政年份:
    2023
  • 资助金额:
    $ 72.5万
  • 项目类别:
Cross-Institutional Faculty Learning to Improve Critical Transitions in STEM Education
跨机构教师学习以改善 STEM 教育的关键转变
  • 批准号:
    2318415
  • 财政年份:
    2023
  • 资助金额:
    $ 72.5万
  • 项目类别:
    Standard Grant
Mechanical Phase Transitions and Critical Fluctuations in Fiber Networks
光纤网络中的机械相变和临界波动
  • 批准号:
    2224030
  • 财政年份:
    2022
  • 资助金额:
    $ 72.5万
  • 项目类别:
    Continuing Grant
Endothelial Cell to Mesenchymal Cell Transitions Play a Critical Biological Sex- and Aging-Dependent Role in Formation and Maintenance of the Acta2+ Atherosclerotic Lesion Protective Fibrous Cap
内皮细胞向间充质细胞的转变在 Acta2 动脉粥样硬化病变保护性纤维帽的形成和维持中发挥着关键的生物性别和衰老依赖性作用
  • 批准号:
    10355596
  • 财政年份:
    2022
  • 资助金额:
    $ 72.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了