Research on coverings of curves and toric varieties through Weierstrass points

基于Weierstrass点的曲线和复曲面簇覆盖研究

基本信息

  • 批准号:
    17540046
  • 负责人:
  • 金额:
    $ 0.83万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2006
  • 项目状态:
    已结题

项目摘要

This research is devoted to the following:(1)The description of the Weierstrass semigroup of a ramification point on a double covering of a curve and its existence.(2)Study on affine toric varieties which contain a monomial curve associated with a numerical semigroup of low genus.(3)The determination of the candidates of the Weierstrass semigroup of a point on a non-singular plane curve of low degree.For (1) we constructed a double covering of a curve with a ramification point over any point and describe the Weierstrass semigroup of the ramification point. An m-semigroup means a numerical semigroup whose minimum positive integer is m. We showed that there is a Weierstrass 2n-semigroup which is not the Weierstrass semigroup of any ramification point on a double covering of a curve for any n>2. But we also proved that any 4-semigroup is the Weierstrass semigroup of some ramification point on a double covering of a curve. In this case, if the number of the ramification points is small, we got such a covering using blow-ups of some rational ruled surface.For (2) we found an affine toric variety which contains a non-primitive 7-semigroup of genus 9 generated by 5 or 6 elements except two cases. Moreover, we also found an affine toric variety which contains a non-primitive 6-semigroup of genus 9 except the semigroups which are the Weierstrass semigroups of ramification points on double coverings. By virtue of the results there are only two numerical semigroups of genus 9 which are not decided whether it is Weierstrass or not.For (3) we gave the complete description of the candidates for the Weierstrass semigroup of a point on a non-singular plane curve of degree 7.
这项研究致力于以下内容:(1)对曲线双重覆盖及其存在的脉冲分离点的描述。(2)对仿射旋转品种的研究,其中包含与低属的数值半群相关的单次曲线。在任何点上构建了曲线的双重覆盖曲线,并描述了分支点的Weierstrass Semigroup。 M-序列是指最小正整数为m的数值半群。我们表明,有一个Weierstrass 2n-序列,它不是任何n> 2的曲线双重覆盖的任何后流点的Weierstrass半群。但是我们还证明,任何四个序列都是曲线双重覆盖的某个后流的Weierstrass Semigroup。在这种情况下,如果分支点的数量很少,我们使用某些有理统治的表面的爆炸获得了这样的覆盖。(2)我们找到了一个仿生的圆磨品种,其中包含由5或6个元素产生的非重要性7个属的属9,除两种情况外。此外,我们还发现了一个仿生的复曲面品种,其中包含一个属9的6个序列,除了半群,这些半群是双重覆盖物上的RAMIFIENT点的Weierstrass半群。由于结果,只有两个属9的数值半群,这些属尚未决定是否是Weierstrass。

项目成果

期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On numerical semigroups of genus 9
关于属 9 的数值半群
On double coverings of a pointed non-singular curve with any Weierstrasse semigroup
关于任意 Weierstrasse 半群的尖非奇异曲线的双重覆盖
The Weierstrass semigroup of a pair of Galois Weierstrass points with prime degree on a curve
曲线上一对具有素次的 Galois Weierstrass 点的 Weierstrass 半群
A semigroup at a pair of Weierstrass points on a cyclic 4-gonal curve and a bielliptic curve
循环四角曲线和双椭圆曲线上一对 Weierstrass 点处的半群
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.Homma;S.J.Kim;J.Komeda
  • 通讯作者:
    J.Komeda
Weierstrasse points on a non-singular plane curve of degree 7
7 次非奇异平面曲线上的 Weierstrasse 点
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KOMEDA Jiryo其他文献

KOMEDA Jiryo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KOMEDA Jiryo', 18)}}的其他基金

Hurwitz' problem through double covers of curves and curves on surfaces
赫尔维茨通过曲线和曲面上的曲线的双重覆盖问题
  • 批准号:
    24540057
  • 财政年份:
    2012
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Hurwitz' problem on Weierstrass points on algebraic curves
关于代数曲线上 Weierstrass 点的 Hurwitz 问题
  • 批准号:
    21540052
  • 财政年份:
    2009
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algebraic curves through commutative semigroups and its application to toric varieties
通过交换半群的代数曲线及其在环面簇中的应用
  • 批准号:
    15540051
  • 财政年份:
    2003
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Algebraic curves through commutative semigroups and its application to toric varieties
通过交换半群的代数曲线及其在环面簇中的应用
  • 批准号:
    15540051
  • 财政年份:
    2003
  • 资助金额:
    $ 0.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了