Research on coverings of curves and toric varieties through Weierstrass points
基于Weierstrass点的曲线和复曲面簇覆盖研究
基本信息
- 批准号:17540046
- 负责人:
- 金额:$ 0.83万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research is devoted to the following:(1)The description of the Weierstrass semigroup of a ramification point on a double covering of a curve and its existence.(2)Study on affine toric varieties which contain a monomial curve associated with a numerical semigroup of low genus.(3)The determination of the candidates of the Weierstrass semigroup of a point on a non-singular plane curve of low degree.For (1) we constructed a double covering of a curve with a ramification point over any point and describe the Weierstrass semigroup of the ramification point. An m-semigroup means a numerical semigroup whose minimum positive integer is m. We showed that there is a Weierstrass 2n-semigroup which is not the Weierstrass semigroup of any ramification point on a double covering of a curve for any n>2. But we also proved that any 4-semigroup is the Weierstrass semigroup of some ramification point on a double covering of a curve. In this case, if the number of the ramification points is small, we got such a covering using blow-ups of some rational ruled surface.For (2) we found an affine toric variety which contains a non-primitive 7-semigroup of genus 9 generated by 5 or 6 elements except two cases. Moreover, we also found an affine toric variety which contains a non-primitive 6-semigroup of genus 9 except the semigroups which are the Weierstrass semigroups of ramification points on double coverings. By virtue of the results there are only two numerical semigroups of genus 9 which are not decided whether it is Weierstrass or not.For (3) we gave the complete description of the candidates for the Weierstrass semigroup of a point on a non-singular plane curve of degree 7.
这项研究致力于以下内容:(1)对曲线双重覆盖及其存在的脉冲分离点的描述。(2)对仿射旋转品种的研究,其中包含与低属的数值半群相关的单次曲线。在任何点上构建了曲线的双重覆盖曲线,并描述了分支点的Weierstrass Semigroup。 M-序列是指最小正整数为m的数值半群。我们表明,有一个Weierstrass 2n-序列,它不是任何n> 2的曲线双重覆盖的任何后流点的Weierstrass半群。但是我们还证明,任何四个序列都是曲线双重覆盖的某个后流的Weierstrass Semigroup。在这种情况下,如果分支点的数量很少,我们使用某些有理统治的表面的爆炸获得了这样的覆盖。(2)我们找到了一个仿生的圆磨品种,其中包含由5或6个元素产生的非重要性7个属的属9,除两种情况外。此外,我们还发现了一个仿生的复曲面品种,其中包含一个属9的6个序列,除了半群,这些半群是双重覆盖物上的RAMIFIENT点的Weierstrass半群。由于结果,只有两个属9的数值半群,这些属尚未决定是否是Weierstrass。
项目成果
期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On numerical semigroups of genus 9
关于属 9 的数值半群
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:K.;Aomoto;M.;Ito;J.Komeda
- 通讯作者:J.Komeda
On double coverings of a pointed non-singular curve with any Weierstrasse semigroup
关于任意 Weierstrasse 半群的尖非奇异曲线的双重覆盖
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Jiryo Komeda;Ohbuchi Akira
- 通讯作者:Ohbuchi Akira
The Weierstrass semigroup of a pair of Galois Weierstrass points with prime degree on a curve
曲线上一对具有素次的 Galois Weierstrass 点的 Weierstrass 半群
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0.7
- 作者:S.J.Kim;J.Komeda
- 通讯作者:J.Komeda
A semigroup at a pair of Weierstrass points on a cyclic 4-gonal curve and a bielliptic curve
循环四角曲线和双椭圆曲线上一对 Weierstrass 点处的半群
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:M.Homma;S.J.Kim;J.Komeda
- 通讯作者:J.Komeda
Weierstrasse points on a non-singular plane curve of degree 7
7 次非奇异平面曲线上的 Weierstrasse 点
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Seon Jeong Kim;Jiryo Komeda
- 通讯作者:Jiryo Komeda
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KOMEDA Jiryo其他文献
KOMEDA Jiryo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KOMEDA Jiryo', 18)}}的其他基金
Hurwitz' problem through double covers of curves and curves on surfaces
赫尔维茨通过曲线和曲面上的曲线的双重覆盖问题
- 批准号:
24540057 - 财政年份:2012
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hurwitz' problem on Weierstrass points on algebraic curves
关于代数曲线上 Weierstrass 点的 Hurwitz 问题
- 批准号:
21540052 - 财政年份:2009
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic curves through commutative semigroups and its application to toric varieties
通过交换半群的代数曲线及其在环面簇中的应用
- 批准号:
15540051 - 财政年份:2003
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Algebraic curves through commutative semigroups and its application to toric varieties
通过交换半群的代数曲线及其在环面簇中的应用
- 批准号:
15540051 - 财政年份:2003
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)