Mathematical Sciences: Complex Manifolds and Meromorphic Mappings

数学科学:复流形和亚纯映射

基本信息

  • 批准号:
    9500491
  • 负责人:
  • 金额:
    $ 12.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1995
  • 资助国家:
    美国
  • 起止时间:
    1995-07-01 至 1998-07-31
  • 项目状态:
    已结题

项目摘要

DMS-9500491 Shiffman Shiffman will continue his research on complex varieties and meromorphic mappings. He will investigate the Kabayashi-Royden infinitesimal pseudometric and Kobayashi pseudodistane with a goal towards obtaining a better understanding of the concept of hyperbolicity for projective manifolds. He will also return to the topic of value distribution theory and will seek new defect relations for meromorphic maps and for sections of vector bundles. Several complex variables arose at the beginning of the century as a natural outgrowth of studies of functions of one complex variable. It became clear early on that the theory differed widely from it predecessor. The underlying geometry was far more difficult to grasp and the function theory had far more affinity with partial differential operators of first order. It thus grew as a hybrid subject combining deep characteristics of differential geometry and differential equations. Many of the fundamental structures were defined in the last three decades. Current studies still concentrate on understanding these basic mathematical forms.
DMS-9500491 Shiffman Shiffman 将继续他对复杂品种和亚态映射的研究。 他将研究 Kabayashi-Royden 无穷小伪度量和 Kobayashi 伪距离,目的是更好地理解射影流形的双曲性概念。 他还将回到值分布理论的主题,并为亚纯映射和向量丛的部分寻找新的缺陷关系。 本世纪初,作为一个复变量函数研究的自然产物,出现了几个复变量。 人们很早就发现该理论与其前身有很大不同。 底层的几何学更加难以掌握,而函数论与一阶偏微分算子的亲和力要强得多。 因此,它发展成为一门结合了微分几何和微分方程深层特征的混合学科。 许多基本结构是在过去三十年中定义的。 目前的研究仍然集中于理解这些基本的数学形式。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bernard Shiffman其他文献

Новые примеры поверхностей в $\mathbb{CP}^3$, гиперболических по Кобаяши@@@New Examples of Kobayashi Hyperbolic Surfaces in $\mathbb{CP}^3$
$mathbb{CP}^3$ 中小林双曲曲面的新示例
  • DOI:
    10.4213/faa35
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Михаил Григорьевич Зайденберг;Mikhail Zaidenberg;Б. Шиффман;Bernard Shiffman
  • 通讯作者:
    Bernard Shiffman

Bernard Shiffman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bernard Shiffman', 18)}}的其他基金

Random Holomorphic Sections and Complex Geometry
随机全纯截面和复杂几何
  • 批准号:
    1201372
  • 财政年份:
    2012
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Continuing Grant
Random Holomorphic Sections and Complex Geometry
随机全纯截面和复杂几何
  • 批准号:
    0901333
  • 财政年份:
    2009
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Continuing Grant
Workshop on Geometry of Holomorphic and Algebraic Curves in Complex Algebraic Varieties
复代数簇中的全纯和代数曲线几何研讨会
  • 批准号:
    0717981
  • 财政年份:
    2007
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Standard Grant
Random Holomorphic Sections and Complex Geometry
随机全纯截面和复杂几何
  • 批准号:
    0600982
  • 财政年份:
    2006
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Continuing Grant
Random Holomorphic Sections and Complex Geometry
随机全纯截面和复杂几何
  • 批准号:
    0100474
  • 财政年份:
    2001
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Continuing Grant
Complex Manifolds and Meromorphic Mappings
复杂流形和亚纯映射
  • 批准号:
    9800479
  • 财政年份:
    1998
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Continuing Grant
U.S.-Japan Cooperative Science: Meromorphic Mappings and Intrinsic Metrics in Complex Geometry
美日合作科学:复杂几何中的亚纯映射和本征度量
  • 批准号:
    9613653
  • 财政年份:
    1997
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Complex Manifolds and Meromorphic Mappings
数学科学:复流形和亚纯映射
  • 批准号:
    9204037
  • 财政年份:
    1992
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Conference on Algebraic and Complex Geometry; to be held April 4-7, 1991 at Johns Hopkins University
数学科学:代数和复几何会议;
  • 批准号:
    9023621
  • 财政年份:
    1991
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Complex Manifolds and Meromorphic Mappings
数学科学:复流形和亚纯映射
  • 批准号:
    9001365
  • 财政年份:
    1990
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于物理嵌入深度图学习的复杂时空系统科学计算理论与算法
  • 批准号:
    92270118
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
复杂组织再生生物材料的仿生构筑与生物效应的基础科学问题
  • 批准号:
    32130062
  • 批准年份:
    2021
  • 资助金额:
    286 万元
  • 项目类别:
    重点项目
基于介科学思想的气固复杂系统深度学习建模方法
  • 批准号:
    62050226
  • 批准年份:
    2020
  • 资助金额:
    100 万元
  • 项目类别:
    专项基金项目
中药复杂组分共晶及共无定形新物质基础的设计构建及科学内涵的探索
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
网络科学中若干非线性组合优化问题的复杂性和算法
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目

相似海外基金

Outreach Core
外展核心
  • 批准号:
    10730407
  • 财政年份:
    2023
  • 资助金额:
    $ 12.6万
  • 项目类别:
Novel Hybrid Computational Models to Disentangle Complex Immune Responses
新型混合计算模型可解开复杂的免疫反应
  • 批准号:
    10794448
  • 财政年份:
    2023
  • 资助金额:
    $ 12.6万
  • 项目类别:
Machine Learning Risk Prediction of Kidney Disease After Extremely Preterm Birth
机器学习对极早产后肾脏疾病的风险预测
  • 批准号:
    10589356
  • 财政年份:
    2023
  • 资助金额:
    $ 12.6万
  • 项目类别:
Development of Analytical Tools for Concentration and Real-Time Control of Dissolved Gases and Their Regulation of Tissue Function
溶解气体浓度和实时控制及其组织功能调节分析工具的开发
  • 批准号:
    10567233
  • 财政年份:
    2023
  • 资助金额:
    $ 12.6万
  • 项目类别:
The Upstream Center: Income Interventions to Address the Fundamental Causes of Cancer Inequities
上游中心:解决癌症不平等根本原因的收入干预措施
  • 批准号:
    10661407
  • 财政年份:
    2023
  • 资助金额:
    $ 12.6万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了