Development of Analytical Tools for Concentration and Real-Time Control of Dissolved Gases and Their Regulation of Tissue Function
溶解气体浓度和实时控制及其组织功能调节分析工具的开发
基本信息
- 批准号:10567233
- 负责人:
- 金额:$ 48.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-01 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAnti-Inflammatory AgentsAstronautsAtherosclerosisBindingBiochemicalBioenergeticsBiologicalBiological SciencesBlood flowBlood gasCarbon DioxideCellsChemicalsClinicalCollaborationsComplexCulture MediaCytoprotectionDataData ReportingDependenceDevelopmentDevicesDiabetes MellitusEngineeringEquilibriumEvaluationExposure toFutureGasesGoalsGraft RejectionHeart RateHormone secretionHormonesHypothalamic structureImmune responseIndustryInstitutionIslets of LangerhansKineticsMalignant NeoplasmsMeasuresMechanicsMediatingMetabolic PathwayMethodologyMethodsModalityNADHNeurotransmittersOilsOxygen ConsumptionPathway interactionsPharmaceutical PreparationsPharmacologic SubstancePhysiologicalPlayProcessProductionPropertyProteinsProtocols documentationProviderPublishingReaction TimeRegulationResearchResearch PersonnelRetinaRoleSamplingSepsisSignal TransductionSignaling MoleculeSolubilitySpecific qualifier valueSystemTechnologyTestingTimeTissue MicroarrayTissue ModelTissuesToxic Environmental SubstancesTubeValidationWaterWorkanalytical toolaqueousdesigndesign and constructionexperiencefundamental researchinstrumentinstrumentationinsulin secretionmathematical modelnovelprotein purificationresponsetechnology developmenttemporal measurementtherapeutic evaluationtherapy developmenttooluser-friendly
项目摘要
Project Summary
The major goal of the proposed research is to develop tools to enable the study of dissolved gases on
biological samples. Both blood gases (O2, and CO2) as well as trace signaling gases (NO, CO and H2S) play
critical roles in regulation of wide array of tissue functions as diverse as regulation of heart rate, blood flow,
immune responses, hormone and neurotransmitter secretion, as well as cytoprotective and anti-inflammatory
properties. Indeed, most if not all tissues produce and are regulated by NO, CO and H2S on top of the central
role of O2 in regulating bioenergetics and metabolic pathways. Research by academic institutions as well as
pharmaceutical companies are endeavoring to harness the beneficial effects of gas signals in order to treat a
range of conditions including diabetes, transplant rejection, sepsis, atherosclerosis and cancer. Despite the
scientific and clinical importance of dissolved gases, quantitative methods to measure real time effects of
dissolved gases on tissue/cells are not available. Investigators who have studied the beneficial signaling
initiated by trace gases and/or who are developing drugs to trigger the same benefits almost exclusively use
water soluble surrogates/donors of each signaling gas. A critical point for this proposal is that such chemical
donors of gases may not allow for accurate control of gas levels within tissue, and due to their low aqueous
solubility, rapidly deplete from culture media. Preliminary data we have generated and published revealed
opposite effects of dissolved H2S vs. that obtained with an aqueous provider of H2S, indicating a need to re-
evaluation the effects of what is established regarding NO, H2S and CO from studies using donor molecules.
As most life science researchers do not have the ability to study the direct effects of trace gases at
physiologically relevant concentrations, we will develop a turnkey, automated instrumentation to control
the concentration and exposure time of tissue to media containing user-specified levels of 6 gases
including NO, CO, H2S, O2, CO2 and N2. This automated and user-friendly system will be constructed to
supply gas mixtures to a variety of widely used tissue assessment modalities including fluidics systems, static
culture in plates, and cuvette systems for studying gas binding interactions to purified proteins. We have
assembled a team consisting of Bio- and Mechanical/Combustion Engineers with many years of experience
designing and constructing gas fluidics system applied to biological analysis, as well as an Applied
Mathematician, an Analytical Chemists and Cellular Physiologists who will be involved with the validation of the
instrumentation. This technology will have broad impact on fundamental research by facilitating the study of
kinetic and concentration-dependent effects of signaling gases on tissue function, signaling and bioenergetics,
and evaluation of therapeutics being developed to mimic the cytoprotective properties of the gases.
项目概要
拟议研究的主要目标是开发工具来研究溶解气体
生物样本。血气(O2 和 CO2)以及痕量信号气体(NO、CO 和 H2S)均发挥作用
在调节多种组织功能中发挥着关键作用,例如调节心率、血流、
免疫反应、激素和神经递质分泌,以及细胞保护和抗炎
特性。事实上,大多数(如果不是全部)组织都会在中枢神经元之上产生 NO、CO 和 H2S,并受到 NO、CO 和 H2S 的调节。
O2 在调节生物能和代谢途径中的作用。学术机构以及
制药公司正在努力利用气体信号的有益作用来治疗
一系列疾病,包括糖尿病、移植排斥、败血症、动脉粥样硬化和癌症。尽管
溶解气体的科学和临床重要性、测量溶解气体实时影响的定量方法
组织/细胞上溶解的气体不可用。研究有益信号的研究人员
由微量气体和/或正在开发药物以引发相同益处的人发起,几乎完全使用
每种信号气体的水溶性替代物/供体。该提案的一个关键点是这种化学品
气体供体可能无法精确控制组织内的气体水平,并且由于其含水量低
溶解度高,从培养基中迅速耗尽。我们生成并发布的初步数据显示
溶解的 H2S 的效果与使用 H2S 水溶液获得的效果相反,表明需要重新
评估使用供体分子进行的研究中所确定的有关 NO、H2S 和 CO 的影响。
由于大多数生命科学研究人员没有能力研究痕量气体的直接影响
生理相关浓度,我们将开发交钥匙自动化仪器来控制
组织在含有用户指定浓度的 6 种气体的介质中的浓度和暴露时间
包括 NO、CO、H2S、O2、CO2 和 N2。这个自动化且用户友好的系统将被构建为
向各种广泛使用的组织评估模式供应气体混合物,包括流体系统、静态
在平板和比色皿系统中培养,用于研究气体与纯化蛋白质的结合相互作用。我们有
组建了一支由具有多年经验的生物和机械/燃烧工程师组成的团队
设计和构建应用于生物分析的气体流体系统,以及应用
数学家、分析化学家和细胞生理学家,他们将参与验证
仪器仪表。这项技术将促进基础研究的研究,从而产生广泛的影响。
信号气体对组织功能、信号传导和生物能学的动力学和浓度依赖性影响,
以及对正在开发的模拟气体细胞保护特性的疗法的评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John C. Kramlich其他文献
John C. Kramlich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
靶向HDAC3/SIAH2蛋白复合物的HDAC3降解剂的作用机制、结构改造及非酶活功能介导的抗炎活性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
卡萨烷选择性调控糖皮质激素受体GR功能的抗炎作用机制与新颖调控剂的设计与发现
- 批准号:82273824
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
ZAP-70选择性共价抑制剂及降解剂的设计合成和抗炎活性研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于片段的P2Y14受体拮抗剂的设计、合成和抗炎活性研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
两种民族药用植物中黄酮类ILCreg诱导剂的发现及其抗炎性肠病机制探究
- 批准号:81960777
- 批准年份:2019
- 资助金额:34 万元
- 项目类别:地区科学基金项目
相似海外基金
Contribution of Endothelial Planar Cell Polarity pathways in Blood Flow Direction Sensing
内皮平面细胞极性通路在血流方向传感中的贡献
- 批准号:
10750690 - 财政年份:2024
- 资助金额:
$ 48.6万 - 项目类别:
Impact of tissue resident memory T cells on the neuro-immune pathophysiology of anterior eye disease
组织驻留记忆 T 细胞对前眼疾病神经免疫病理生理学的影响
- 批准号:
10556857 - 财政年份:2023
- 资助金额:
$ 48.6万 - 项目类别:
Experiences of Discrimination, Dysbiosis, and Racial Disparities in Ovarian Cancer
卵巢癌中的歧视、生态失调和种族差异的经历
- 批准号:
10371537 - 财政年份:2023
- 资助金额:
$ 48.6万 - 项目类别:
Decoding the functional pleiotropy of IL-20Rβ ligands in inflammation and tumorigenesis
解码 IL-20Rβ 配体在炎症和肿瘤发生中的功能多效性
- 批准号:
10350447 - 财政年份:2023
- 资助金额:
$ 48.6万 - 项目类别:
Microbiome targeted oral butyrate therapy in Gulf War multisymptom illness
微生物组靶向口服丁酸盐治疗海湾战争多症状疾病
- 批准号:
10367805 - 财政年份:2023
- 资助金额:
$ 48.6万 - 项目类别: