Random Holomorphic Sections and Complex Geometry
随机全纯截面和复杂几何
基本信息
- 批准号:0901333
- 负责人:
- 金额:$ 30.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-06-01 至 2013-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Bernard Shiffman will continue his research on applications of pluripotential theory and the Bergman-Szego kernel to the statistics of random functions of several complex variables and more generally of random sections of positive line bundles on compact complex manifolds. The principal focus of the project is the interplay between geometry and probability. One of the goals of the research is to refine our understanding of the distributions of zeros and critical points of polynomials, holomorphic sections of ample line bundles, and entire functions. A fundamental ingredient in the study of random sections is the Bergman-Szego kernel, and this project involves an examination of the asymptotics of this kernel for large powers of the line bundle. Shiffman will investigate asymptotic statistics for polynomials of increasing degree, holomorphic sections of increasing powers of a line bundle, or in the case of entire functions, on domains of increasing size. One problem is to estimate "hole probabilities" and "overcrowding probabilities" (i.e., the probabilities that random systems of equations have no solutions or too many solutions in fixed domains). Shiffman will also study the distribution of zeros of real and complex "fewnomial" systems--polynomials of high degree with few terms. He will also investigate the asymptotic distribution of critical points for spherical harmonics as the dimension increases.The distribution of critical points and zeros of random functions is relevant to many areas in physics, signal and image processing, and other areas of engineering. In the physical sciences it is often necessary to handle disorder, where a certain amount of randomness is inserted into a system. Random polynomials provide an elementary model for many systems, such as systems of atoms and molecules and their component particles--protons, neutrons, and electrons. Quantum mechanics describes these particles by wave functions, which are solutions of Schrodinger's equation. The zeros and local maxima of wave functions give important information on states of atoms and molecules; the zeros are known in quantum chemistry and physics as nodal lines. Polynomials in several variables correspond to systems with several degrees of freedom, and those polynomials of high degree correspond to wave functions for highly excited states. While Shiffman's recent research was concerned primarily with demonstrating that average states of such large systems are typical, as in the law of large numbers, this project will also include the study of "rare events," which has applications to various areas of current interest, such as economics and the study of climatic extremes.
伯纳德·希夫曼 (Bernard Shiffman) 将继续研究多能理论和 Bergman-Szego 核在多个复变量随机函数统计中的应用,更一般地说是在紧复流形上正线丛随机部分的统计。 该项目的主要焦点是几何和概率之间的相互作用。 这项研究的目标之一是加深我们对多项式零点和临界点、充足线丛的全纯部分以及整个函数的分布的理解。 随机截面研究的一个基本要素是 Bergman-Szego 核,该项目涉及检查该核对于线束大幂的渐近性。 希夫曼将研究递增次数多项式的渐近统计、线丛递增幂的全纯部分,或者在整个函数的情况下,在大小递增的域上。 其中一个问题是估计“空洞概率”和“过度拥挤概率”(即随机方程组在固定域中无解或太多解的概率)。 希夫曼还将研究实数和复杂“少项”系统的零点分布——项数很少的高次多项式。他还将研究球谐函数临界点随维数增加的渐近分布。随机函数的临界点和零点的分布与物理、信号和图像处理以及其他工程领域的许多领域相关。 在物理科学中,通常需要处理无序性,即在系统中插入一定量的随机性。 随机多项式为许多系统提供了基本模型,例如原子和分子及其组成粒子(质子、中子和电子)的系统。 量子力学通过波函数来描述这些粒子,波函数是薛定谔方程的解。 波函数的零点和局部极大值提供了有关原子和分子状态的重要信息;这些零点在量子化学和物理学中被称为节点线。 多个变量的多项式对应于具有多个自由度的系统,而那些高次多项式对应于高激发态的波函数。 虽然希夫曼最近的研究主要涉及证明此类大型系统的平均状态是典型的,就像大数定律一样,但该项目还将包括“罕见事件”的研究,该研究可应用于当前感兴趣的各个领域,例如经济学和极端气候研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bernard Shiffman其他文献
Новые примеры поверхностей в $\mathbb{CP}^3$, гиперболических по Кобаяши@@@New Examples of Kobayashi Hyperbolic Surfaces in $\mathbb{CP}^3$
$mathbb{CP}^3$ 中小林双曲曲面的新示例
- DOI:
10.4213/faa35 - 发表时间:
2005 - 期刊:
- 影响因子:4.5
- 作者:
Михаил Григорьевич Зайденберг;Mikhail Zaidenberg;Б. Шиффман;Bernard Shiffman - 通讯作者:
Bernard Shiffman
Bernard Shiffman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bernard Shiffman', 18)}}的其他基金
Random Holomorphic Sections and Complex Geometry
随机全纯截面和复杂几何
- 批准号:
1201372 - 财政年份:2012
- 资助金额:
$ 30.04万 - 项目类别:
Continuing Grant
Workshop on Geometry of Holomorphic and Algebraic Curves in Complex Algebraic Varieties
复代数簇中的全纯和代数曲线几何研讨会
- 批准号:
0717981 - 财政年份:2007
- 资助金额:
$ 30.04万 - 项目类别:
Standard Grant
Random Holomorphic Sections and Complex Geometry
随机全纯截面和复杂几何
- 批准号:
0600982 - 财政年份:2006
- 资助金额:
$ 30.04万 - 项目类别:
Continuing Grant
Random Holomorphic Sections and Complex Geometry
随机全纯截面和复杂几何
- 批准号:
0100474 - 财政年份:2001
- 资助金额:
$ 30.04万 - 项目类别:
Continuing Grant
Complex Manifolds and Meromorphic Mappings
复杂流形和亚纯映射
- 批准号:
9800479 - 财政年份:1998
- 资助金额:
$ 30.04万 - 项目类别:
Continuing Grant
U.S.-Japan Cooperative Science: Meromorphic Mappings and Intrinsic Metrics in Complex Geometry
美日合作科学:复杂几何中的亚纯映射和本征度量
- 批准号:
9613653 - 财政年份:1997
- 资助金额:
$ 30.04万 - 项目类别:
Standard Grant
Mathematical Sciences: Complex Manifolds and Meromorphic Mappings
数学科学:复流形和亚纯映射
- 批准号:
9500491 - 财政年份:1995
- 资助金额:
$ 30.04万 - 项目类别:
Continuing Grant
Mathematical Sciences: Complex Manifolds and Meromorphic Mappings
数学科学:复流形和亚纯映射
- 批准号:
9204037 - 财政年份:1992
- 资助金额:
$ 30.04万 - 项目类别:
Continuing Grant
Mathematical Sciences: Conference on Algebraic and Complex Geometry; to be held April 4-7, 1991 at Johns Hopkins University
数学科学:代数和复几何会议;
- 批准号:
9023621 - 财政年份:1991
- 资助金额:
$ 30.04万 - 项目类别:
Standard Grant
Mathematical Sciences: Complex Manifolds and Meromorphic Mappings
数学科学:复流形和亚纯映射
- 批准号:
9001365 - 财政年份:1990
- 资助金额:
$ 30.04万 - 项目类别:
Continuing Grant
相似国自然基金
基于偏振态追迹法的全光纤型偏振光学相干层析成像技术研究
- 批准号:62305120
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
重夸克偶素高阶计算及全重四夸克态在LHC上产生的研究
- 批准号:12375079
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
超低温高比能全液相锂硫电池多级结构硫正极的构筑及其过渡态演化机制研究
- 批准号:52302270
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
OH+HCl/DCl↔H2O/HOD+Cl态-态反应的全维微分截面研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
面向全温域适用的镓酸盐长余辉发光材料体系的缺陷态能级调控
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Bergman kernel, holomorphic automorphism groups and their applications
Bergman核、全纯自同构群及其应用
- 批准号:
17H07092 - 财政年份:2017
- 资助金额:
$ 30.04万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Studies on Vanishing Theorems and Extension Problems of Holomorphic Sections based on Singular Hermitian Metrics
基于奇异埃尔米特度量的全纯截面消失定理与可拓问题研究
- 批准号:
17H04821 - 财政年份:2017
- 资助金额:
$ 30.04万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
Property of super-conformal maps inherited from holomorphic maps and its application
全纯映射的超共形映射的性质及其应用
- 批准号:
25400063 - 财政年份:2013
- 资助金额:
$ 30.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The quaternionic holomorphic differential geometry of totally complex submanifolds
全复子流形的四元全纯微分几何
- 批准号:
25400065 - 财政年份:2013
- 资助金额:
$ 30.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Random Holomorphic Sections and Complex Geometry
随机全纯截面和复杂几何
- 批准号:
1201372 - 财政年份:2012
- 资助金额:
$ 30.04万 - 项目类别:
Continuing Grant