未来无线通信网络中的随机系统与最优资源-性能控制
项目介绍
AI项目解读
基本信息
- 批准号:11371010
- 项目类别:面上项目
- 资助金额:50.0万
- 负责人:
- 依托单位:
- 学科分类:A0407.随机优化与统计优化
- 结题年份:2017
- 批准年份:2013
- 项目状态:已结题
- 起止时间:2014-01-01 至2017-12-31
- 项目参与者:施雨池; 武金玲; 车豪丰; 李曼秾; 刘少华;
- 关键词:
项目摘要
We will integrate MIMO technology, cognitive radio network technology, parallel channels and mobile cloud computing technology together concerning related stochastic systems and optimal controls to form a unified theory and methodology framework to conduct control policy-making and analysis. Firstly, under imperfect channel information, we will use optimal filtering technologies to determine the channel evolving processes, and then we will combine the determinations of spectrum, capacity rate, etc. in MIMO and cognitive radio networks together to form a unified stochastic optimal control system with external environmental factors. Moreover, under the condition that user input processes are doubly stochastic renewal processes, we will design related control policy and prove it indeed to be asymptotically optimal via the method of stochastic diffusion approximation. Secondly, we will incorporate the case that user input signal processes are multi-channel color image processes whose rates determined by coupling stochastic partial differential equations into the above unified framework. In this case, we need to study the existence and uniqueness of solution to related reflecting stochastic partial differential equations under random environment and study the diffusion approximation and asymptotic optimal control based on the limiting processes driven by reflecting stochastic partial differential equations. Thirdly, we will integrate the above discussions into optimal resource-performance allocation for cloud computing network with multiple class users and multiple service pools of parallel servers, and moreover, we will obtain the unified framework for limiting performance analysis and asymptotic optimal control.
研究集多进多出MIMO技术、认知网技术、多信道并行与移动云计算技术于一体并创立有关归一化的随机系统与最优控制的理论与方法框架体系。首先,在不完全信息的信道基础上,利用最优滤波技术来确定信道的随机演化过程,提炼出集MIMO与认知网频谱、容量速率等资源配置与性能优化为一体的具有外部环境因子的随机最优控制系统,并在用户输入过程为一般双随机更新过程时,设计出有关的控制策略并利用随机扩散逼近证明所设计的策略的确具有渐进最优性;其次,将用户输入信号速率过程是由多个随机偏微分方程藕合描述的彩图过程的情况融入到上述归一化的体系中,并研究随机环境下的反射随机偏微分方程解的存在唯一性、以反射随机偏微分方程为极限过程的扩散逼近及有关的随机渐近最优控制;再者,将上述讨论应用到具有多类别用户多服务池且每个服务池具有并行服务器云计算网络的资源-性能最优配置并得到由随机偏微分方程驱使的极限性能分析与渐近最优控制体系。
结项摘要
4年来,我们按申请计划执行了该项目所设计的各项任务,所得到的研究成果与各课题中所设计的要点相符,我们顺利完成了研究任务、达到了预期目标,并且,针对近期国际国内大数据、人工智能的迅猛发展,我们还拓展了计划中的一些研究,它们将具体在下面的报告中给予说明。在此项目的基金资助下,我们取得了一系列的重要学术成果,它们已发表或即将发表在国际顶尖、权威及著名杂志上,由该项目基金资助并发表的论文有6篇(其中包括5篇3区以上SCI论文、2篇次2区以上SCI论文、3篇次EI论文,而其中一篇是世界同行中公认的顶尖杂志,被南京大学定为A区),获得了一批科学奖励或荣誉,它们包括:2017年国际著名出版社IEEE顶尖国际会议系列优秀特邀嘉宾大会主旨报告证书、2017年江苏省现场统计学会优秀论文特别奖、国际著名出版社Taylor & Francis 2015年数学与统计学读者奖提名、13个国际会议上作特邀嘉宾大会主旨报告(50分钟左右)、8个国际会议上作特邀分会或分组特邀报告(30分钟左右)、及在4年一次的2016年第十次中国运筹学会年会上作特邀主题报告(30分钟)。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(1)
专利数量(0)
Mean-Variance Hedging Based on an Incomplete Market with External Risk Factors of Non-Gaussian OU Processes
基于非高斯OU过程外部风险因素不完全市场的均值方差对冲
- DOI:10.1155/2015/625289
- 发表时间:2014-10
- 期刊:Mathematical Problems in Engineering
- 影响因子:--
- 作者:Wanyang Dai
- 通讯作者:Wanyang Dai
A unified system of FB-SDEs with Levy jumps and double completely-S skew refelections
具有 Levy 跳跃和双完全 S 偏斜反射的 FB-SDE 统一系统
- DOI:--
- 发表时间:2018
- 期刊:Communications in Mathematical Sciences
- 影响因子:1
- 作者:Wanyang Dai
- 通讯作者:Wanyang Dai
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi || "--"}}
- 发表时间:{{ item.publish_year || "--" }}
- 期刊:{{ item.journal_name }}
- 影响因子:{{ item.factor || "--"}}
- 作者:{{ item.authors }}
- 通讯作者:{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ patent.updateTime }}
其他文献
分数Levy过程的随机积分及其驱动的随机微分方程
- DOI:--
- 发表时间:2013
- 期刊:数学物理学报
- 影响因子:--
- 作者:吕学斌;戴万阳
- 通讯作者:戴万阳
A non-conservation stochastic partial differential equation driven by anisotropic fractional L´evy random field
各向异性分数 L´evy 随机场驱动的非守恒随机偏微分方程
- DOI:10.1142/s0219493721500283
- 发表时间:2020
- 期刊:Stochastics and Dynamics
- 影响因子:1.1
- 作者:吕学斌;戴万阳
- 通讯作者:戴万阳
A white noise approach to stochastic partial differential equations driven by the fractional Lévy noise
由分数 Lévy 噪声驱动的随机偏微分方程的白噪声方法
- DOI:10.1186/s13662-018-1861-y
- 发表时间:2018-11
- 期刊:Advances in Difference Equations
- 影响因子:4.1
- 作者:吕学斌;戴万阳
- 通讯作者:戴万阳
其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi || "--" }}
- 发表时间:{{ item.publish_year || "--"}}
- 期刊:{{ item.journal_name }}
- 影响因子:{{ item.factor || "--" }}
- 作者:{{ item.authors }}
- 通讯作者:{{ item.author }}
内容获取失败,请点击重试
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:
AI项目摘要
AI项目思路
AI技术路线图
请为本次AI项目解读的内容对您的实用性打分
非常不实用
非常实用
1
2
3
4
5
6
7
8
9
10
您认为此功能如何分析更能满足您的需求,请填写您的反馈:
戴万阳的其他基金
基于大数据智能云广义物联网的资源最优博弈与均衡控制
- 批准号:11771006
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
4G无线通信中的最优动态资源配置与数据包调度
- 批准号:10971249
- 批准年份:2009
- 资助金额:22.0 万元
- 项目类别:面上项目
现代信息系统中随机网络的理论、方法及其应用
- 批准号:10371053
- 批准年份:2003
- 资助金额:18.0 万元
- 项目类别:面上项目
相似国自然基金
{{ item.name }}
- 批准号:{{ item.ratify_no }}
- 批准年份:{{ item.approval_year }}
- 资助金额:{{ item.support_num }}
- 项目类别:{{ item.project_type }}
相似海外基金
{{
item.name }}
{{ item.translate_name }}
- 批准号:{{ item.ratify_no }}
- 财政年份:{{ item.approval_year }}
- 资助金额:{{ item.support_num }}
- 项目类别:{{ item.project_type }}