N-S方程数值逼近中的大时间步长方法

结题报告
项目介绍
AI项目解读

基本信息

  • 批准号:
    10671154
  • 项目类别:
    面上项目
  • 资助金额:
    24.0万
  • 负责人:
  • 依托单位:
  • 学科分类:
    A0504.微分方程数值解
  • 结题年份:
    2009
  • 批准年份:
    2006
  • 项目状态:
    已结题
  • 起止时间:
    2007-01-01 至2009-12-31

项目摘要

对于非定常N-S方程,研究数值逼近中的大时间步长方法,空间离散用有限元、谱函数和小波基,时间离散用欧拉半隐格式:线性项用隐式格式离散以增加其格式的稳定性能,非线性项用显式格式离散以增加格式的简单性。对于光滑的初始数据,或对于非光滑数据(在原数值格式中加一稳定化小量值项),我们可以分析在时间步长小于某一常数时,格式具有长时间稳定性、和在有限时间跨度内的收敛速度阶数。对于用有限元、谱函数和小波基和欧拉半隐格式构造的数值逼近,我们将设计程序,使得具有保耗散结构的性质,得以在并行计算机进行长时间的计算,以达到长时间数值模拟和分析N-S方程解的有关行为,为非线性科学的发展和计算流体力学在工程技术中的应用做点贡献。

结项摘要

项目成果

期刊论文数量(37)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stability and convergence of the Crank-Nicolson/Adams-Bashforth scheme for the time-dependent Navier-Stokes equations
含时纳维-斯托克斯方程的 Crank-Nicolson/Adams-Bashforth 格式的稳定性和收敛性
  • DOI:
    --
  • 发表时间:
    --
  • 期刊:
    SIAM Journal on Numerical Analysis
  • 影响因子:
    2.9
  • 作者:
    He; Yinnian;Sun; Weiwei
  • 通讯作者:
    Weiwei
A stabilized finite element method based on two local Gauss integrations for the Stokes equations
基于斯托克斯方程的两个局部高斯积分的稳定有限元方法
  • DOI:
    10.1016/j.cam.2007.02.015
  • 发表时间:
    --
  • 期刊:
    Journal of Computational and Applied Mathematics
  • 影响因子:
    2.4
  • 作者:
    Li; Jian;He; Yinnian
  • 通讯作者:
    Yinnian
Stability and error analysis for spectral Galerkin method for the Navier-Stokes equations with L^2 initial data,
具有 L^2 初始数据的 Navier-Stokes 方程的谱 Galerkin 方法的稳定性和误差分析,
  • DOI:
    --
  • 发表时间:
    --
  • 期刊:
    Numer. Methods for PDEs, 2008, 24(1): 79-103.
  • 影响因子:
    --
  • 作者:
    He; Yinnian
  • 通讯作者:
    Yinnian
The existence of global attractors for semilinear parabolic equation in H-k spaces
H-k空间中半线性抛物方程全局吸引子的存在性
  • DOI:
    --
  • 发表时间:
    --
  • 期刊:
    Nonlinear Analysis-Theory Methods & Applications
  • 影响因子:
    1.4
  • 作者:
    He; Yinnian;Song; Lingyu;Zhang; Yindi
  • 通讯作者:
    Yindi
A multi-level stabilized finite element method for the stationary Navier-Stokes equations
平稳纳维-斯托克斯方程的多级稳定有限元方法
  • DOI:
    --
  • 发表时间:
    --
  • 期刊:
    Computer Methods in Applied Mechanics and Engineering
  • 影响因子:
    7.2
  • 作者:
    Li; Jian;He; Yinnian;Xu; Hui
  • 通讯作者:
    Hui

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--"}}
  • 发表时间:
    {{ item.publish_year || "--" }}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--"}}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ patent.updateTime }}

其他文献

不可压缩流动的并行数值方法
  • DOI:
    --
  • 发表时间:
    2013
  • 期刊:
    中国科学:数学
  • 影响因子:
    --
  • 作者:
    尚月强;何银年
  • 通讯作者:
    何银年
非定常Stokes方程压力稳定化全离散有限元方法
  • DOI:
    --
  • 发表时间:
    --
  • 期刊:
    Mathematics and Computers in Simulation
  • 影响因子:
    4.6
  • 作者:
    张通;何银年
  • 通讯作者:
    何银年
Navier-Stokes方程几种稳定化有限元算法数值比较
  • DOI:
    --
  • 发表时间:
    2016
  • 期刊:
    数学物理学报
  • 影响因子:
    --
  • 作者:
    文娟;何银年;黄鹏展;李敏
  • 通讯作者:
    李敏
非定常Navier-Stokes方程基于完全重叠型区域分解的有限元并行算法
  • DOI:
    --
  • 发表时间:
    2011
  • 期刊:
    计算物理
  • 影响因子:
    --
  • 作者:
    尚月强;何银年
  • 通讯作者:
    何银年
Unified analysis for stabilized methods of low-order mixed finite elements for stationary Navier-Stokes equations
平稳纳维-斯托克斯方程低阶混合有限元稳定方法的统一分析
  • DOI:
    --
  • 发表时间:
    2013-10-17
  • 期刊:
  • 影响因子:
    --
  • 作者:
    陈刚;冯民富;何银年
  • 通讯作者:
    何银年

其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--" }}
  • 发表时间:
    {{ item.publish_year || "--"}}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--" }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
empty
内容获取失败,请点击重试
重试联系客服
title开始分析
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:

AI项目思路

AI技术路线图

何银年的其他基金

微生物絮凝扩散方程的动力学研究及差分有限元方法
  • 批准号:
    12026257
  • 批准年份:
    2020
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
3维不可压缩MHD方程组的全离散隐式/显式差分有限元算法
  • 批准号:
    11771348
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
不同粘性的N-S方程的有限元迭代算法
  • 批准号:
    11271298
  • 批准年份:
    2012
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
3维非定常N-S方程的隐/显式数值格式的研究
  • 批准号:
    10971166
  • 批准年份:
    2009
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目
非定常N-S方程全离散多层算法研究
  • 批准号:
    10371095
  • 批准年份:
    2003
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目
关于N-S方程惯性流形算法的研究
  • 批准号:
    19971067
  • 批准年份:
    1999
  • 资助金额:
    8.5 万元
  • 项目类别:
    面上项目

相似国自然基金

{{ item.name }}
  • 批准号:
    {{ item.ratify_no }}
  • 批准年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}

相似海外基金

{{ item.name }}
{{ item.translate_name }}
  • 批准号:
    {{ item.ratify_no }}
  • 财政年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了

AI项目解读示例

课题项目:调控A型流感病毒诱导IFN-β表达的机制研究

AI项目摘要:

本研究聚焦于TRIM2蛋白在A型流感病毒诱导的IFN-β表达中的调控机制。A型流感病毒是全球性健康问题,其感染可导致严重的呼吸道疾病。IFN-β作为关键的抗病毒因子,其表达水平对抗病毒防御至关重要。然而,TRIM2如何调控IFN-β的表达尚未明确。本研究假设TRIM2通过与病毒RNA或宿主因子相互作用,影响IFN-β的产生。我们将采用分子生物学、细胞生物学和免疫学方法,探索TRIM2与A型流感病毒诱导IFN-β表达的关系。预期结果将揭示TRIM2在抗病毒免疫反应中的作用,为开发新的抗病毒策略提供理论基础。该研究对理解宿主抗病毒机制具有重要科学意义,并可能对临床治疗流感病毒感染提供新的视角。

AI项目思路:

科学问题:TRIM2如何调控A型流感病毒诱导的IFN-β表达?
前期研究:已有研究表明TRIM2参与抗病毒反应,但其具体机制尚不明确。
研究创新点:本研究将深入探讨TRIM2在IFN-β表达中的直接作用机制。
技术路线:包括病毒学、分子生物学、细胞培养和免疫检测技术。
关键技术:TRIM2与病毒RNA的相互作用分析,IFN-β启动子活性检测。
实验模型:使用A型流感病毒感染的细胞模型进行研究。

AI技术路线图

        graph TD
          A[研究起始] --> B[文献回顾与假设提出]
          B --> C[实验设计与方法学准备]
          C --> D[A型流感病毒感染模型建立]
          D --> E[TRIM2与病毒RNA相互作用分析]
          E --> F[TRIM2对IFN-β启动子活性的影响]
          F --> G[IFN-β表达水平测定]
          G --> H[TRIM2功能丧失与获得研究]
          H --> I[数据收集与分析]
          I --> J[结果解释与科学验证]
          J --> K[研究结论与未来方向]
          K --> L[研究结束]
      
关闭
close
客服二维码