Towards a mathematical description of complex networks: Effective structure and latent hyperbolic geometry
走向复杂网络的数学描述:有效结构和潜在双曲几何
基本信息
- 批准号:RGPIN-2019-05183
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Complex systems are a class of systems composed of multiple elements interacting in a nonsimple way such that collective behaviors emerge. These systems can be of various natures: biological (e.g., ecosystems, microbiomes, brains), technological (e.g., the Internet, power grids), or social (e.g., contact/social networks). Their emergent behaviors are equally diverse: the stability of ecosystems under external perturbations, the flocking behavior of birds, the cognitive functions of the brain, and the susceptibility of a population to sustain an epidemic of an infectious disease. Critically, these systems are fundamentally more than the sum of their parts, meaning that their collective dynamics are not encoded in the individual elements, but are the results of the complex structure of the interactions between these elements. Because these structures lie somewhere between order and randomness, they cannot easily be fully characterized by a concise set of synthesizing mathematical observables. As a result, the current state-of-the-art modeling approaches still require the full structure to be specified as an input. These extensive models, however, fail to provide insights on the role played by many structural features in the outcome of most dynamical process. Using concepts from Graph Theory, Statistical Physics and Non-linear Dynamics, this research program will develop new tools and techniques to unveil the role these structures play on the dynamics they support. A first approach consists in a dimensionality reduction technique that will systematically regroup elements with similar roles in a given dynamical process. Being agnostic to the topology, this method will allow us to probe these groups of elements and identify their common properties. The second theoretical approach will encode the complexity of these structures into the positions of their elements in a hyperbolic geometry. These maps will allow to understand the organization of these interactions at a glance, and will be leveraged to develop better forecasting models for the behavior of complex systems. Although firmly rooted in classical concepts from Theoretical Physics, the long-term objectives of this research program will have a lasting impact in many disciplines outside the realm of Physics---such as Biology, Epidemiology, Economics and Genetics---, hence broadening the scope of Physics research, and will help to shape the new transdisciplinary dynamics of modern academic research.
复杂系统是由多个元素组成的一类系统,这些元素以非简单的方式相互作用,从而出现集体行为。这些系统可以具有多种性质:生物系统(例如生态系统、微生物组、大脑)、技术系统(例如互联网、电网)或社交系统(例如联系人/社交网络)。它们的新兴行为同样多种多样:外部扰动下生态系统的稳定性、鸟类的集群行为、大脑的认知功能以及人口对传染病流行的易感性。至关重要的是,这些系统从根本上来说不仅仅是其各个部分的总和,这意味着它们的集体动力不是编码在各个元素中,而是这些元素之间相互作用的复杂结构的结果。由于这些结构介于有序性和随机性之间,因此它们无法轻易地通过一组简洁的综合数学观测值来完全表征。因此,当前最先进的建模方法仍然需要将完整结构指定为输入。然而,这些广泛的模型未能深入了解许多结构特征在大多数动态过程的结果中所扮演的角色。该研究项目将利用图论、统计物理学和非线性动力学的概念,开发新的工具和技术,以揭示这些结构对其支持的动力学所发挥的作用。第一种方法包括降维技术,该技术将系统地重新组合在给定动态过程中具有相似作用的元素。由于与拓扑无关,这种方法将允许我们探测这些元素组并识别它们的共同属性。第二种理论方法将这些结构的复杂性编码到双曲几何中其元素的位置中。这些地图将使人们一目了然地了解这些交互的组织,并将被用来为复杂系统的行为开发更好的预测模型。尽管该研究项目牢固植根于理论物理学的经典概念,但其长期目标将对物理学领域以外的许多学科(例如生物学、流行病学、经济学和遗传学)产生持久影响,从而拓宽研究范围物理学研究的范围,并将有助于塑造现代学术研究的新的跨学科动力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Allard, Antoine其他文献
Structural preferential attachment: Stochastic process for the growth of scale-free, modular, and self-similar systems
- DOI:
10.1103/physreve.85.026108 - 发表时间:
2012-02-13 - 期刊:
- 影响因子:2.4
- 作者:
Hebert-Dufresne, Laurent;Allard, Antoine;Dube, Louis J. - 通讯作者:
Dube, Louis J.
Heterogeneous bond percolation on multitype networks with an application to epidemic dynamics
- DOI:
10.1103/physreve.79.036113 - 发表时间:
2009-03-01 - 期刊:
- 影响因子:2.4
- 作者:
Allard, Antoine;Noel, Pierre-Andre;Pourbohloul, Babak - 通讯作者:
Pourbohloul, Babak
Percolation and the Effective Structure of Complex Networks
- DOI:
10.1103/physrevx.9.011023 - 发表时间:
2019-02-05 - 期刊:
- 影响因子:12.5
- 作者:
Allard, Antoine;Hebert-Dufresne, Laurent - 通讯作者:
Hebert-Dufresne, Laurent
Asymmetric percolation drives a double transition in sexual contact networks
- DOI:
10.1073/pnas.1703073114 - 发表时间:
2017-08-22 - 期刊:
- 影响因子:11.1
- 作者:
Allard, Antoine;Althouse, Benjamin M.;Hebert-Dufresne, Laurent - 通讯作者:
Hebert-Dufresne, Laurent
The effect of a prudent adaptive behaviour on disease transmission
- DOI:
10.1038/nphys3832 - 发表时间:
2016-11-01 - 期刊:
- 影响因子:19.6
- 作者:
Scarpino, Samuel V.;Allard, Antoine;Hebert-Dufresne, Laurent - 通讯作者:
Hebert-Dufresne, Laurent
Allard, Antoine的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Allard, Antoine', 18)}}的其他基金
Towards a mathematical description of complex networks: Effective structure and latent hyperbolic geometry
走向复杂网络的数学描述:有效结构和潜在双曲几何
- 批准号:
RGPIN-2019-05183 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Towards a mathematical description of complex networks: Effective structure and latent hyperbolic geometry
走向复杂网络的数学描述:有效结构和潜在双曲几何
- 批准号:
RGPIN-2019-05183 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Towards a mathematical description of complex networks: Effective structure and latent hyperbolic geometry
走向复杂网络的数学描述:有效结构和潜在双曲几何
- 批准号:
RGPIN-2019-05183 - 财政年份:2019
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Towards a mathematical description of complex networks: Effective structure and latent hyperbolic geometry
走向复杂网络的数学描述:有效结构和潜在双曲几何
- 批准号:
DGECR-2019-00006 - 财政年份:2019
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
基于统一数学化描述的深度学习系统对抗性现象研究
- 批准号:
- 批准年份:2020
- 资助金额:59 万元
- 项目类别:面上项目
非数学语言描述问题的机器理解方法研究
- 批准号:61772012
- 批准年份:2017
- 资助金额:51.0 万元
- 项目类别:面上项目
费托合成催化中规则几何形状活性相的设计及其数学模型描述
- 批准号:21673272
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
基于云团运动数学描述与量化表征的光伏发电功率超短期预测方法研究
- 批准号:51577067
- 批准年份:2015
- 资助金额:54.0 万元
- 项目类别:面上项目
控制策略和不确定性因素对传染病传播和治疗影响的数学描述与模型分析
- 批准号:11461067
- 批准年份:2014
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Towards a mathematical description of complex networks: Effective structure and latent hyperbolic geometry
走向复杂网络的数学描述:有效结构和潜在双曲几何
- 批准号:
RGPIN-2019-05183 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Development of mathematical and computer-assisted analysis towards comprehensive description of finite-time singularities
数学和计算机辅助分析的发展以全面描述有限时间奇点
- 批准号:
21H01001 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Towards a mathematical description of complex networks: Effective structure and latent hyperbolic geometry
走向复杂网络的数学描述:有效结构和潜在双曲几何
- 批准号:
RGPIN-2019-05183 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Towards a mathematical description of complex networks: Effective structure and latent hyperbolic geometry
走向复杂网络的数学描述:有效结构和潜在双曲几何
- 批准号:
RGPIN-2019-05183 - 财政年份:2019
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Towards a mathematical description of complex networks: Effective structure and latent hyperbolic geometry
走向复杂网络的数学描述:有效结构和潜在双曲几何
- 批准号:
DGECR-2019-00006 - 财政年份:2019
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Launch Supplement