Time-frequency analysis in deep learning framework: theory, computation and applications
深度学习框架中的时频分析:理论、计算和应用
基本信息
- 批准号:RGPIN-2021-03657
- 负责人:
- 金额:$ 1.53万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abnormal brain activities or structural vibrations that have a sudden onset and occur at a distinct frequency range, may provide early warnings of abnormal conditions or structural failure. Time-frequency analysis (TFA) is comprised of various mathematical transforms that describe how frequency content evolves with time. Local features are often first extracted from the time-frequency representation of time-varying signals and then feed to the machine learning algorithms for classification and pattern recognition. Thus, integrating TFA into a realtime monitoring and diagnosis system, we can make early detection to prevent expensive and fatal damages. Despite of its usefulness, two main issues severely impede the effectiveness of the TFA based monitoring and diagnoses. First, the computational effort of TFA is often substantial. This is particularly problematic for processing ultra large data set and/or realtime data. Second, many standard TFA techniques use a fixed set of bases/frames to decompose a signal. In practice, many of important applications will generate highly random and timevarying signals. Using the same set of bases/frames to analyze the entire signal may not be effective. In recent years, with the easy access to powerful computing resources, better performance can be obtained using deep learning neural networks in image recognition, manufacturing], disease diagnosis, and speech processing. The main advantages of deep learning network is that it does not require expert knowledge but often produces higher accuracy than the classic methods. But mathematical understanding of deep learning networks is still not yet clear. The main objective of this research program is to theoretically investigate the time-frequency analysis in the deep learning framework and explore whether such a combination can overcome the limitations of existing classic time-frequency analysis. We aim to answer the following questions: 1) Does the deep learning framework of a time-frequency analysis alter the original signal? 2) Can it help to determine an optimal time-frequency representation of a signal dynamically? 3) If so, what are the essential mathematical properties of dynamic timefrequency analysis using deep learning architecture 4) Can we implement fast algorithms to compute such a representation? This research proposal is interdisciplinary and practical. It integrates mathematics, deep learning, computing, and application development. The trainees in the program will work closely with scientists in data science, health care and industries and make significant original contributions relevant to important real world problems. The success of this program will advance time-frequency analysis field, create sophisticated time-frequency analysis tailored for specific types of signals and lead to the R&D development of computer-assisted monitoring and detection software for various applications.
突然发生并在不同频率范围内发生的异常大脑活动或结构振动可以提供异常情况或结构故障的早期预警。时频分析 (TFA) 由各种数学变换组成,这些数学变换描述了频率内容如何随变化而变化。通常首先从时变信号的时频表示中提取局部特征,然后将其输入机器学习算法进行分类和模式识别,因此,将 TFA 集成到实时监测和诊断系统中,我们可以进行早期检测。以防止造成昂贵且致命的损失。就其实用性而言,有两个主要问题严重阻碍了基于 TFA 的监控和诊断的有效性:首先,TFA 的计算量通常很大,这对于处理超大型数据集和/或实时数据来说尤其成问题。 TFA 技术使用一组固定的基数/帧来分解信号,最近,许多重要的应用都会生成高度随机和时变的信号。年,由于可以轻松获得强大的计算资源,因此在图像识别、制造、疾病诊断和语音处理中使用深度学习神经网络可以获得更好的性能。深度学习网络的主要优点是不需要专家知识,但通常需要专业知识。但深度学习网络的数学理解仍不清楚,该研究项目的主要目标是从理论上研究深度学习框架中的时频分析,并探索这种组合是否可以克服。我们的目标是回答以下问题:现有经典时频分析的局限性。问题:1)时频分析的深度学习框架是否会改变原始信号?2)它是否有助于动态确定信号的最佳时频表示?3)如果是这样,其基本数学特性是什么?使用深度学习架构进行动态时频分析 4)我们可以实现快速算法来计算这种表示吗?该研究提案是跨学科的且实用的。该项目的学员将与科学家密切合作。在数据科学、医疗保健和工业领域并为重要的现实世界问题做出重要的原创贡献,该计划的成功将推动时频分析领域的发展,为特定类型的信号创建复杂的时频分析,并促进计算机辅助监测和检测的研发发展。适用于各种应用的软件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhu, Hongmei其他文献
MicroRNA biomarkers of type 2 diabetes: evidence synthesis from meta-analyses and pathway modelling.
- DOI:
10.1007/s00125-022-05809-z - 发表时间:
2023-02 - 期刊:
- 影响因子:8.2
- 作者:
Zhu, Hongmei;Leung, Siu-wai - 通讯作者:
Leung, Siu-wai
Identification and Validation of Novel Immune-Related Alternative Splicing Signatures as a Prognostic Model for Colon Cancer.
- DOI:
10.3389/fonc.2022.866289 - 发表时间:
2022 - 期刊:
- 影响因子:4.7
- 作者:
Liu, Yunze;Xu, Lei;Hao, Chuanchuan;Wu, Jin;Jia, Xianhong;Ding, Xia;Lin, Changwei;Zhu, Hongmei;Zhang, Yi - 通讯作者:
Zhang, Yi
The diploid genome sequence of an Asian individual.
亚洲个体的二倍体基因组序列
- DOI:
10.1038/nature07484 - 发表时间:
2008-11-06 - 期刊:
- 影响因子:64.8
- 作者:
Wang, Jun;Wang, Wei;Li, Ruiqiang;Li, Yingrui;Tian, Geng;Goodman, Laurie;Fan, Wei;Zhang, Junqing;Li, Jun;Zhang, Juanbin;Guo, Yiran;Feng, Binxiao;Li, Heng;Lu, Yao;Fang, Xiaodong;Liang, Huiqing;Du, Zhenglin;Li, Dong;Zhao, Yiqing;Hu, Yujie;Yang, Zhenzhen;Zheng, Hancheng;Hellmann, Ines;Inouye, Michael;Pool, John;Yi, Xin;Zhao, Jing;Duan, Jinjie;Zhou, Yan;Qin, Junjie;Ma, Lijia;Li, Guoqing;Yang, Zhentao;Zhang, Guojie;Yang, Bin;Yu, Chang;Liang, Fang;Li, Wenjie;Li, Shaochuan;Li, Dawei;Ni, Peixiang;Ruan, Jue;Li, Qibin;Zhu, Hongmei;Liu, Dongyuan;Lu, Zhike;Li, Ning;Guo, Guangwu;Zhang, Jianguo;Ye, Jia;Fang, Lin;Hao, Qin;Chen, Quan;Liang, Yu;Su, Yeyang;San, A.;Ping, Cuo;Yang, Shuang;Chen, Fang;Li, Li;Zhou, Ke;Zheng, Hongkun;Ren, Yuanyuan;Yang, Ling;Gao, Yang;Yang, Guohua;Li, Zhuo;Feng, Xiaoli;Kristiansen, Karsten;Wong, Gane Ka-Shu;Nielsen, Rasmus;Durbin, Richard;Bolund, Lars;Zhang, Xiuqing;Li, Songgang;Yang, Huanming;Wang, Jian - 通讯作者:
Wang, Jian
Mitochondrial genome of Leocrates chinensis Kinberg, 1866 (Annelida: Hesionidae).
- DOI:
10.1080/23802359.2023.2167480 - 发表时间:
2023 - 期刊:
- 影响因子:0.5
- 作者:
Li, Xiaolong;Yang, Deyuan;Qiu, Jian-Wen;Liu, Penglong;Meng, Dehao;Zhu, Hongmei;Guo, Limei;Luo, Site;Wang, Zhi;Ke, Caihuan - 通讯作者:
Ke, Caihuan
Effects of TiC addition on microstructure, microhardness and wear resistance of 18Ni300 maraging steel by direct laser deposition
- DOI:
10.1016/j.jmatprotec.2021.117213 - 发表时间:
2021-05-14 - 期刊:
- 影响因子:6.3
- 作者:
Hu, Jipeng;Zhu, Hongmei;Duan, Ji'an - 通讯作者:
Duan, Ji'an
Zhu, Hongmei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhu, Hongmei', 18)}}的其他基金
Time-frequency analysis in deep learning framework: theory, computation and applications
深度学习框架中的时频分析:理论、计算和应用
- 批准号:
RGPIN-2021-03657 - 财政年份:2021
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Applied Time-frequency Analysis
应用时频分析
- 批准号:
RGPIN-2014-05059 - 财政年份:2018
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Applied Time-frequency Analysis
应用时频分析
- 批准号:
RGPIN-2014-05059 - 财政年份:2017
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Applied Time-frequency Analysis
应用时频分析
- 批准号:
RGPIN-2014-05059 - 财政年份:2016
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Applied Time-frequency Analysis
应用时频分析
- 批准号:
RGPIN-2014-05059 - 财政年份:2015
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Applied Time-frequency Analysis
应用时频分析
- 批准号:
RGPIN-2014-05059 - 财政年份:2014
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Time-frequency analysis in biomedicine: mathematical, computational, and application aspects
生物医学中的时频分析:数学、计算和应用方面
- 批准号:
299387-2007 - 财政年份:2012
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Time-frequency analysis in biomedicine: mathematical, computational, and application aspects
生物医学中的时频分析:数学、计算和应用方面
- 批准号:
299387-2007 - 财政年份:2011
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Time-frequency analysis in biomedicine: mathematical, computational, and application aspects
生物医学中的时频分析:数学、计算和应用方面
- 批准号:
299387-2007 - 财政年份:2010
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Time-frequency analysis in biomedicine: mathematical, computational, and application aspects
生物医学中的时频分析:数学、计算和应用方面
- 批准号:
299387-2007 - 财政年份:2009
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
面向调频信号的优化时间—分数阶频率分析方法及其应用
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非一致条件下的水文时间序列分析方法研究
- 批准号:51709075
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于函数型主成分分析的季节调整和混合频率时间序列模型:理论与应用
- 批准号:71501134
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
基于载波相位的卫星双向时间传递关键技术研究
- 批准号:11403032
- 批准年份:2014
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
时间序列时域分解与混合频率序列协整分析
- 批准号:U1304703
- 批准年份:2013
- 资助金额:20.0 万元
- 项目类别:联合基金项目
相似海外基金
Collaborative Research: Optimized frequency-domain analysis for astronomical time series
合作研究:天文时间序列的优化频域分析
- 批准号:
2307979 - 财政年份:2023
- 资助金额:
$ 1.53万 - 项目类别:
Standard Grant
Integrative Analysis of Adaptive Information Processing and Learning-Dependent Circuit Reorganization in the Auditory System
听觉系统中自适应信息处理和学习依赖电路重组的综合分析
- 批准号:
10715925 - 财政年份:2023
- 资助金额:
$ 1.53万 - 项目类别:
Evolutionary adaptation of dense microbial populations to range expansion
密集微生物种群对范围扩张的进化适应
- 批准号:
10751361 - 财政年份:2023
- 资助金额:
$ 1.53万 - 项目类别:
Refining neurophysiological biomarkers of epilepsy using deep learning to guide pediatric epilepsy surgery
利用深度学习完善癫痫的神经生理学生物标志物来指导小儿癫痫手术
- 批准号:
10664790 - 财政年份:2023
- 资助金额:
$ 1.53万 - 项目类别:
Molecular and Computational Tools for Identifying Somatic Mosaicism in Human Tissues
识别人体组织中体细胞镶嵌的分子和计算工具
- 批准号:
10661147 - 财政年份:2023
- 资助金额:
$ 1.53万 - 项目类别: