Molecular and Computational Tools for Identifying Somatic Mosaicism in Human Tissues
识别人体组织中体细胞镶嵌的分子和计算工具
基本信息
- 批准号:10661147
- 负责人:
- 金额:$ 40.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-15 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressBar CodesBenchmarkingBiological AssayBrainCatalogingCell FractionCell NucleusCellsCentrifugationCloud ComputingComplementComputer softwareComputing MethodologiesCopy Number PolymorphismDNA Insertion ElementsDataDevelopmentDisease susceptibilityEventExhibitsFrequenciesGastric GlandsGene FrequencyGenetic PolymorphismGenomeGenomicsGoalsHumanHuman GenomeIndividualInheritedInvestigationLarge IntestineLinkMalignant NeoplasmsMolecularMosaicismMutation DetectionOutputPercollPhasePhenotypePopulationPreparationPrevalenceProstateReportingResolutionRetrotransposonRunningShort Tandem RepeatSingle Nucleotide PolymorphismSmall IntestinesSomatic MutationStandardizationStructureSurveysTechnologyTestingTimeTissuesVariantWorkanalysis pipelinecomputerized toolsdensitydisease phenotypeexome sequencingexperiencegenetic variantgenome sequencinghigh throughput screeninghuman tissueimprovedinnovationiodixanolmosaicnanoporeopen sourcepersonalized approachsingle cell sequencingsoftware repositorytargeted sequencingtooltraitwhole genomezygote
项目摘要
Abstract
Human genomes harbor significant variation both between and within individuals. Numerous studies have
explored inherited variation across human populations and linked various germline polymorphisms to human
traits and disease susceptibility. Genomic sequences also vary within an individual, occurring after zygote
formation and leading to variation present in a frequency spectrum ranging from individual cells to entire tissues.
This somatic mosaicism of genome variation has been well established in cells of phenotypically normal
individuals and has been shown to also be associated with some disease phenotypes, particularly cancers.
However, these investigations have been mostly limited to higher frequency mosaicism (e.g. >5-10% variant
allele frequency) due to technical limitations in both molecular assays and computational methodology.
Compounding these technological challenges is that each human tissue exhibits apparently different rates of
somatic mosaicism. For example, it is currently estimated that each cell within the human brain contains
hundreds to a few thousand somatic single-nucleotide variants (SNVs) and that a smaller fraction of cells harbor
somatic copy number variations (CNVs), mobile element insertions (MEIs), and short tandem repeat expansions
(STRs). In contrast, somatic mutation rates have been reported to be significantly higher in the large and small
intestines and lower in gastric and prostatic glands. These rates have been ascertained through a variety of
approaches, including SNP microarrays, bulk and single cell whole genome sequencing, and direct amplification
and sequencing of candidate events, each with its own advantages and limitations. However, there has yet to
be a systematic investigation of human somatic mosaicism across the entire frequency spectrum within human
tissues. Our team has extensive collective experience developing tools for identifying somatic mosaicism in the
human brain, including recent surveys of SNV prevalence from whole genome and exome sequencing, CNVs
from single cell short-read and nanopore genome sequencing, and retrotransposons through targeted capture.
Here, we propose to improve, optimize, and extend our approaches to other human tissues as part of
the SMaHT initiative, which will provide an excellent platform for systematically identifying, cataloging,
and exploring human somatic mosaicism across tissues. We will achieve this through two phases: in the
UG3 phase of this project, we will (1) improve molecular assays for nanopore targeted bulk capture and single
cell sequencing and (2) improve computational approaches for detecting somatic mosaicism from single cell and
bulk tissue data, while in the UH3 phase we will (3) optimize, benchmark, and validate molecular assays for high-
throughput application across human tissues and (4) improve efficiency, runtime, and structured reporting of
somatic variants. Collectively, these efforts will enhance our ability to detect at scale previously overlooked
classes of somatic variation and extend the size range and frequency spectrum for which they may be
ascertained.
抽象的
人类基因组在个体之间和个体内部都存在显着差异。许多研究已经
探索了人类群体的遗传变异,并将各种种系多态性与人类联系起来
性状和疾病易感性。基因组序列在个体内也会发生变化,发生在受精卵之后
形成并导致从单个细胞到整个组织的频谱中存在的变化。
这种基因组变异的体细胞嵌合现象已在表型正常的细胞中得到很好的证实。
个体,并且已被证明还与某些疾病表型相关,特别是癌症。
然而,这些研究大多仅限于较高频率的嵌合体(例如> 5-10%的变异
等位基因频率)由于分子测定和计算方法的技术限制。
使这些技术挑战更加复杂的是,每个人体组织表现出明显不同的速率
体细胞嵌合体。例如,目前估计人脑内的每个细胞都含有
数百到数千个体细胞单核苷酸变异(SNV),并且一小部分细胞含有
体细胞拷贝数变异 (CNV)、移动元件插入 (MEI) 和短串联重复扩增
(STR)。相比之下,据报道,大型和小型体细胞的体细胞突变率显着更高。
肠以及胃和前列腺的下部。这些比率是通过各种方式确定的
方法,包括 SNP 微阵列、批量和单细胞全基因组测序以及直接扩增
以及候选事件的排序,每个都有自己的优点和局限性。然而,目前还没有
对人类整个频谱范围内的人体体细胞嵌合现象进行系统研究
组织。我们的团队拥有丰富的集体经验,开发用于识别体细胞嵌合体的工具
人脑,包括最近对全基因组和外显子组测序、CNV 的 SNV 流行率的调查
来自单细胞短读长和纳米孔基因组测序,以及通过靶向捕获的逆转录转座子。
在这里,我们建议改进、优化并将我们的方法扩展到其他人体组织,作为
SMaHT 计划将为系统地识别、编目、
并探索人类跨组织体细胞嵌合现象。我们将通过两个阶段来实现这一目标:
在该项目的 UG3 阶段,我们将 (1) 改进纳米孔靶向批量捕获和单
细胞测序和(2)改进用于检测单细胞体细胞嵌合的计算方法和
大量组织数据,而在 UH3 阶段,我们将 (3) 优化、基准测试和验证高通量的分子测定。
跨人体组织的吞吐量应用程序,以及(4)提高效率、运行时间和结构化报告
体细胞变异。总的来说,这些努力将增强我们大规模检测以前被忽视的能力
体细胞变异的类别并扩展它们可能的尺寸范围和频谱
确定。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alan P Boyle其他文献
Alan P Boyle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alan P Boyle', 18)}}的其他基金
High-throughput inverted reporter assay for characterization of silencers and enhancer blockers
用于表征沉默子和增强子阻断剂的高通量反向报告基因测定
- 批准号:
10357266 - 财政年份:2022
- 资助金额:
$ 40.13万 - 项目类别:
High-throughput inverted reporter assay for characterization of silencers and enhancer blockers
用于表征沉默子和增强子阻断剂的高通量反向报告基因测定
- 批准号:
10578838 - 财政年份:2022
- 资助金额:
$ 40.13万 - 项目类别:
Mobile element derived chromatin looping variability in human populations
人群中移动元件衍生的染色质循环变异
- 批准号:
10708736 - 财政年份:2022
- 资助金额:
$ 40.13万 - 项目类别:
Mobile element derived chromatin looping variability in human populations
人群中移动元件衍生的染色质循环变异
- 批准号:
10340478 - 财政年份:2022
- 资助金额:
$ 40.13万 - 项目类别:
Predicting the Impact of Genomic Variation on Cellular States
预测基因组变异对细胞状态的影响
- 批准号:
10294338 - 财政年份:2021
- 资助金额:
$ 40.13万 - 项目类别:
Predicting the Impact of Genomic Variation on Cellular States
预测基因组变异对细胞状态的影响
- 批准号:
10474618 - 财政年份:2021
- 资助金额:
$ 40.13万 - 项目类别:
Predicting the Impact of Genomic Variation on Cellular States
预测基因组变异对细胞状态的影响
- 批准号:
10623221 - 财政年份:2021
- 资助金额:
$ 40.13万 - 项目类别:
New technologies for accurate capture and sequencing of repeat-associated regions
用于精确捕获和测序重复相关区域的新技术
- 批准号:
10308722 - 财政年份:2020
- 资助金额:
$ 40.13万 - 项目类别:
RegulomeDB: A Resource for the Human Regulome
RegulomeDB:人类调节组资源
- 批准号:
10663943 - 财政年份:2017
- 资助金额:
$ 40.13万 - 项目类别:
RegulomeDB: A Resource for the Human Regulome
RegulomeDB:人类调节组资源
- 批准号:
10245271 - 财政年份:2017
- 资助金额:
$ 40.13万 - 项目类别:
相似国自然基金
基于代谢组差异分析与DNA宏条形码技术“中药材-提取物-制剂”普适的人参属中药鉴别研究
- 批准号:82374030
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于DNA荧光条形码的RNA m6A位点空间分辨多重成像分析研究
- 批准号:32301256
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于条形码谱系追踪和CRISPR高通量筛选发现CXCL12增强结直肠癌细胞免疫治疗的分子机制研究
- 批准号:82303735
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度学习的硅基类条形码波导多目标传感器的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于DNA条形码的中国真猎蝽亚科分类研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Vesicle Epitope Transcript sequencing (VET-seq): Droplet-based Multiomic Profiling Platform for Single Vesicle Analysis
囊泡表位转录本测序 (VET-seq):用于单囊泡分析的基于液滴的多组学分析平台
- 批准号:
10613257 - 财政年份:2023
- 资助金额:
$ 40.13万 - 项目类别:
TempO-LINC high throughput high sensitivity single cell gene expression profiling assay Ph II
TempO-LINC 高通量高灵敏度单细胞基因表达谱分析第二阶段
- 批准号:
10699784 - 财政年份:2023
- 资助金额:
$ 40.13万 - 项目类别:
Optimization, Manufacturing and Testing of a Lead Therapeutic Bacteriophage Cocktail for the Treatment of Antibiotic-Resistant Klebsiella pneumoniae Infections
用于治疗耐抗生素肺炎克雷伯菌感染的先导治疗噬菌体混合物的优化、制造和测试
- 批准号:
10674294 - 财政年份:2023
- 资助金额:
$ 40.13万 - 项目类别:
Preparation of sequencing libraries for multi-analyte analysis of small RNAs
制备用于小 RNA 多分析物分析的测序文库
- 批准号:
10759916 - 财政年份:2023
- 资助金额:
$ 40.13万 - 项目类别:
Integrative analysis of spatial transcriptomics with histology images and single cells
空间转录组学与组织学图像和单细胞的综合分析
- 批准号:
10733815 - 财政年份:2023
- 资助金额:
$ 40.13万 - 项目类别: