Exponential Models on Manifolds
流形上的指数模型
基本信息
- 批准号:RGPIN-2022-02945
- 负责人:
- 金额:$ 1.31万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Formal statistical analysis of directional data begins with the von Mises-Fisher distribution. This distribution is a first order exponential model that describes a mean direction as well as concentration. To incorporate a second order exponential term, several attempts were made but the formal structure was assembled in the Bingham distribution. As this is a second order exponential model, this distribution is useful for axial data. Subsequent to the latter attempts to exponentially incorporate the first and second order simultaneously were made resulting in the Fisher-Bingham distributiion. In terms of estimation, numerical maximum likelihood or method of moment methods have been primarily used. As exponential models involving many higher-order terms, including the Fisher-Bingham distribution, involve complicated normalizing constants, this presents challenges as they would need to be approximately and/or numerically dealt with. Thus estimation would have to be calculated numerically and would not be available in closed form. As a way around this a regression based approach was formulated where a consistent nonparametric density estimator replaced the normalizing constant. This leads to a regression estimator that was asymptotically equivalent to the maximum likelihood estimator. This of course means that because this is formulated as a canonical exponential model of arbitrary order, statistical theory provides asymptotic normality and therefore statistical inference could be performed. The hypersphere is a generic example of a manifold. By this we mean that around every point, there is a neighbourhood that is topologically the same as the open unit ball in some Euclidean space. The formalization for directional data analysis, especially through the spherical harmonic basis can be generalized to a manifold. This can be achieved through understanding the spherical harmonics as the eigenfunctions of the Laplacian on a manifold. Although concentration to the hypersphere is specific, most of the methods developed can be extended to manifolds and along with applications, will be the main content of this research program.
方向数据的形式统计分析始于von mises-fisher分布。该分布是描述平均方向和浓度的一阶指数模型。为了纳入二阶指数术语,进行了几次尝试,但正式结构是在宾厄姆分布中组装的。由于这是二阶指数模型,因此此分布对于轴向数据很有用。在后者尝试同时纳入第一和第二阶的尝试之后,导致了Fisher-Bingham分布。就估计而言,主要使用了数值最大似然或力矩方法方法。由于涉及许多高阶术语(包括Fisher-Bingham分布)的指数模型涉及复杂的正常常数,因此这带来了挑战,因为它们需要大致和/或数字处理。因此,必须以数值计算估计,并且不会以封闭形式可用。作为围绕这种基于回归的方法的一种方式,在一致的非参数密度估计器取代了归一化常数的情况下。这导致回归估计量在渐近上等同于最大似然估计器。当然,这意味着,由于这是任意秩序的规范指数模型,因此统计理论提供了渐近态性,因此可以进行统计推断。超晶体是歧管的通用例子。我们的意思是,在每个点附近,都有一个邻居在某些欧几里得空间中与开放的单位球相同。方向数据分析的形式化,尤其是通过球形谐波基础的形式化可以推广到多种多样。这可以通过理解球形谐波作为laplacian的特征函数来实现。尽管集中到超晶体是特定的,但开发的大多数方法可以扩展到多种多样,并且与应用一起将是该研究计划的主要内容。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kim, Peter其他文献
Successful Corneal Autograft After Clearance of Anterior Chamber Cytomegalovirus With Oral Valganciclovir in a Patient With Multiple Failed Corneal Allografts
- DOI:
10.1097/ico.0b013e3182120f73 - 发表时间:
2011-09-01 - 期刊:
- 影响因子:2.8
- 作者:
Lusthaus, Jed A.;Kim, Peter;Wechsler, Alfred W. - 通讯作者:
Wechsler, Alfred W.
Risk factors for degenerative, symptomatic rotator cuff tears: a case-control study.
- DOI:
10.1016/j.jse.2021.10.006 - 发表时间:
2022-04 - 期刊:
- 影响因子:3
- 作者:
Song, Amos;Cannon, Damien;Kim, Peter;Ayers, Gregory D.;Gao, Chan;Giri, Ayush;Jain, Nitin B. - 通讯作者:
Jain, Nitin B.
Increased risk of malignancy for patients older than 40 years with appendicitis and an appendix wider than 10 mm on computed tomography scan: A post hoc analysis of an EAST multicenter study
- DOI:
10.1016/j.surg.2020.05.044 - 发表时间:
2020-10-01 - 期刊:
- 影响因子:3.8
- 作者:
Naar, Leon;Kim, Peter;Kaafarani, Haytham M. A. - 通讯作者:
Kaafarani, Haytham M. A.
Use of Advance Care Planning Billing Codes in a Tertiary Care Center Setting
- DOI:
10.3122/jabfm.2019.06.190121 - 发表时间:
2019-11-01 - 期刊:
- 影响因子:2.9
- 作者:
Kim, Peter;Daly, Jeanette M.;Levy, Barcey T. - 通讯作者:
Levy, Barcey T.
Biological Circuit Models of Immune Regulatory Response: A Decentralized Control System
- DOI:
10.1109/cdc.2011.6161395 - 发表时间:
2011-01-01 - 期刊:
- 影响因子:0
- 作者:
Peet, Matthew;Kim, Peter;Lee, Peter P. - 通讯作者:
Lee, Peter P.
Kim, Peter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kim, Peter', 18)}}的其他基金
Mechanism of targeting of Peroxisome-Mitochondria localizing proteins
过氧化物酶体-线粒体定位蛋白的靶向机制
- 批准号:
RGPIN-2020-05865 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Bioinformatics and Biostatistics of Gastrointestinal Diseases and Geometric Statistics
胃肠道疾病生物信息学和生物统计学与几何统计学
- 批准号:
RGPIN-2016-03909 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Mechanism of targeting of Peroxisome-Mitochondria localizing proteins
过氧化物酶体-线粒体定位蛋白的靶向机制
- 批准号:
RGPIN-2020-05865 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Bioinformatics and Biostatistics of Gastrointestinal Diseases and Geometric Statistics
胃肠道疾病生物信息学和生物统计学与几何统计学
- 批准号:
RGPIN-2016-03909 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Mechanism of targeting of Peroxisome-Mitochondria localizing proteins
过氧化物酶体-线粒体定位蛋白的靶向机制
- 批准号:
RGPIN-2020-05865 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Bioinformatics and Biostatistics of Gastrointestinal Diseases and Geometric Statistics
胃肠道疾病生物信息学和生物统计学与几何统计学
- 批准号:
RGPIN-2016-03909 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Unconventional ER exit pathway in mammalian Cells
哺乳动物细胞中非常规的 ER 退出途径
- 批准号:
RGPIN-2015-04077 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Unconventional ER exit pathway in mammalian Cells
哺乳动物细胞中非常规的 ER 退出途径
- 批准号:
RGPIN-2015-04077 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Bioinformatics and Biostatistics of Gastrointestinal Diseases and Geometric Statistics
胃肠道疾病生物信息学和生物统计学与几何统计学
- 批准号:
RGPIN-2016-03909 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Unconventional ER exit pathway in mammalian Cells
哺乳动物细胞中非常规的 ER 退出途径
- 批准号:
RGPIN-2015-04077 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
跨型号电池差异对其外特性的作用机制及普适性建模与健康度评估研究
- 批准号:52307233
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
河北南部地区灰霾的来源和形成机制研究
- 批准号:41105105
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于Petri网和DSM的型号产品协同设计过程和数据世系建模及分析方法研究
- 批准号:61170001
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
保险风险模型、投资组合及相关课题研究
- 批准号:10971157
- 批准年份:2009
- 资助金额:24.0 万元
- 项目类别:面上项目
RKTG对ERK信号通路的调控和肿瘤生成的影响
- 批准号:30830037
- 批准年份:2008
- 资助金额:190.0 万元
- 项目类别:重点项目
相似海外基金
Moduli and peiods for Landau-Ginzburg models
Landau-Ginzburg 模型的模数和周期
- 批准号:
19K21021 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Algebraic models for non-simply connected manifolds
非简连通流形的代数模型
- 批准号:
1916669 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Studentship
Riemann-Hilbert problem for Gromov-Witten invariants
Gromov-Witten 不变量的黎曼-希尔伯特问题
- 批准号:
17K05193 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical models on one-dimensional elastic bodies in Riemannian manifolds and their applications
黎曼流形中一维弹性体数学模型及其应用
- 批准号:
15K04863 - 财政年份:2015
- 资助金额:
$ 1.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Frobenius manifolds, Hurwitz spaces and random matrix models
Frobenius 流形、Hurwitz 空间和随机矩阵模型
- 批准号:
358371-2008 - 财政年份:2012
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual