Riemann-Hilbert problem for Gromov-Witten invariants
Gromov-Witten 不变量的黎曼-希尔伯特问题
基本信息
- 批准号:17K05193
- 负责人:
- 金额:$ 2.25万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2017
- 资助国家:日本
- 起止时间:2017-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Every semi-simple Frobenius manifold can be viewed as a solution of a classical Riemann-Hilbert problem. The monodromy data is determined by a certain subset of a finite dimensional complex vector space equipped with a symmetric bilinear form. This subset has all the properties of a root system except that the bilinear form is not necessarily positive definite. The elements of this subset are called reflection vectors because the reflections with respect to the corresponding orthogonal hyperplanes generate the monodromy group of the Frobenius manifold. The problem is to classify the reflection vectors corresponding the semi-simple Frobenius manifolds that underly quantum cohomology. It is known that the blowup operation preserves semi-simplicity of quantum cohomology. Therefore, it is natural to investigate how does the reflection vectors change under the blow up operation. On the other hand, there is a very interesting conjecture that gives an explicit description of the reflections in terms of exceptional objects in the derived category. I have started a project in collaboration with my student in which the goal is to prove that if the conjecture holds for some manifold X, then it holds for the blowup of X at finitely many points. We did not complete the project yet but we made an interesting progress: we proved that certain exceptional objects supported on the exceptional divisor of the blowup are reflection vectors. We wrote a paper which is now available on the arXiv and it will be submitted to a journal soon.
每个半单弗罗贝尼乌斯流形都可以被视为经典黎曼-希尔伯特问题的解。单性数据由配备对称双线性形式的有限维复向量空间的某个子集确定。该子集具有根系统的所有属性,除了双线性形式不一定是正定的。该子集的元素称为反射向量,因为相对于相应正交超平面的反射生成弗罗贝尼乌斯流形的单向群。问题是对对应于量子上同调的半单弗罗贝尼乌斯流形的反射向量进行分类。众所周知,爆炸运算保留了量子上同调的半简性。因此,研究反射矢量在爆炸操作下如何变化是很自然的。另一方面,有一个非常有趣的猜想,它根据派生类别中的异常对象给出了反射的明确描述。我和我的学生合作启动了一个项目,其目标是证明如果该猜想对于某个流形 X 成立,那么它对于 X 在有限多个点上的爆炸也成立。我们还没有完成这个项目,但我们取得了一个有趣的进展:我们证明了爆炸异常除数上支持的某些异常对象是反射向量。我们写了一篇论文,现已在 arXiv 上发布,并将很快提交给期刊。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The 2-Component BKP Grassmannian and Simple Singularities of Type D
- DOI:10.1093/imrn/rnz325
- 发表时间:2018-04
- 期刊:
- 影响因子:1
- 作者:Jipeng Cheng;T. Milanov
- 通讯作者:Jipeng Cheng;T. Milanov
Primitive forms and Frobenius structures on the Hurwiotz spaces
Hurwiotz 空间上的原始形式和 Frobenius 结构
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Milanov Todor;Tonita Valentin;Todor Milanov;Todor Milanov;Todor Milanov;Todor Milanov;Todor Milanov;Todor Milanov;Todor Milanov;Todor Milanov
- 通讯作者:Todor Milanov
Fano orbifold lines of type D and integrable hierarchies
D 型 Fano Orbifold 线和可积层次结构
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Milanov Todor;Tonita Valentin;Todor Milanov
- 通讯作者:Todor Milanov
Gromov--Witten invariants of Fano orbifold lines of type D and integrable hierarchies
Gromov--D 型法诺环折线和可积层次的维滕不变量
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Milanov Todor;Tonita Valentin;Todor Milanov;Todor Milanov;Todor Milanov;Todor Milanov;Todor Milanov;Todor Milanov;Todor Milanov;Todor Milanov;Todor Milanov;Todor Milanov
- 通讯作者:Todor Milanov
Integral Structure for Simple Singularities
- DOI:10.3842/sigma.2020.081
- 发表时间:2020-03
- 期刊:
- 影响因子:0.9
- 作者:T. Milanov;Chenghan Zha
- 通讯作者:T. Milanov;Chenghan Zha
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MILANOV Todor其他文献
MILANOV Todor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MILANOV Todor', 18)}}的其他基金
Integrability in Gromov--Witten theory
格罗莫夫--维滕理论中的可积性
- 批准号:
22K03265 - 财政年份:2022
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
K-theoretic enumerative invariants and q-difference equations
K 理论枚举不变量和 q 差分方程
- 批准号:
19F19802 - 财政年份:2019
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for JSPS Fellows
W-constraints and the Eynard-Orantin topological recursion
W 约束和 Eynard-Orantin 拓扑递归
- 批准号:
26800003 - 财政年份:2014
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
W-constraints in Singularity Theory
奇点理论中的 W 约束
- 批准号:
23740005 - 财政年份:2011
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
相似国自然基金
量子上同调的Gamma整结构相关问题研究
- 批准号:12271532
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
代数量子拟群上的Pontryagin对偶、Hopf双模范畴及其Connes循环上同调理论
- 批准号:12271089
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
环簇及其子簇上的层的量子上同调
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Calabi-Yau代数的同调和表示与Poisson代数的同调
- 批准号:11901396
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
Hopf代数的上同调、形变和量子齐次空间
- 批准号:11971418
- 批准年份:2019
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
CAREER: Elliptic cohomology and quantum field theory
职业:椭圆上同调和量子场论
- 批准号:
2340239 - 财政年份:2024
- 资助金额:
$ 2.25万 - 项目类别:
Continuing Grant
Geometric Representations of the Elliptic Quantum Toroidal Algebras
椭圆量子环形代数的几何表示
- 批准号:
23K03029 - 财政年份:2023
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Differential geometry and integrable systems: exploiting new links
微分几何和可积系统:利用新的联系
- 批准号:
23H00083 - 财政年份:2023
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Symplectic cohomology and quantum cohomology of Fano manifolds
Fano流形的辛上同调和量子上同调
- 批准号:
2306204 - 财政年份:2023
- 资助金额:
$ 2.25万 - 项目类别:
Standard Grant
LEAPS-MPS: Quantum Field Theories and Elliptic Cohomology
LEAPS-MPS:量子场论和椭圆上同调
- 批准号:
2316646 - 财政年份:2023
- 资助金额:
$ 2.25万 - 项目类别:
Standard Grant