LEAPS-MPS: Quantum Field Theories and Elliptic Cohomology

LEAPS-MPS:量子场论和椭圆上同调

基本信息

  • 批准号:
    2316646
  • 负责人:
  • 金额:
    $ 13.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

The dialog between mathematics and physics has a long history of yielding insights in both disciplines, often revealing deep, unifying structure, such as in general relativity and Riemannian geometry. Topology is the study of shapes; in particular, topology asks about properties of shapes that remain unchanged as the shape is smoothly transformed. Over the past century, advances in quantum physics, especially condensed matter physics and superstring theory, depended on innovations in topology. One such innovation is factorization algebras, a mathematical model for the observables of a (classical or quantum) field theory. This project uses factorization algebras to explore a conjectured relationship between a certain type of quantum field theory and an object in topology called elliptic cohomology. The precise structure of this relationship has remained elusive for decades; a resolution to this conjecture would provide insight into both a geometric interpretation of elliptic cohomology and foundational questions in quantum physics related to string theory. This award also supports a regional conference on topology and mathematical physics, a distinguished lecture series, and research opportunities for undergraduates at the PI’s institution, both increasing participation of underrepresented minorities in mathematics and enhancing the research environment of the PI’s institution. More specifically, this project explores the relationship between equivariant factorization algebras, supersymmetric twisted field theories, and elliptic cohomology, with the goal of giving insight into a geometric understanding of the latter. The first component of the project involves analyzing the relationship between smoothly equivariant factorization algebras and supersymmetric twisted functorial field theories, using tools of higher operads. Supersymmetric twisted field theories have been used to bridge mathematical physics and cohomology theories; in low dimensions there are known differential geometric descriptions of these field theories using deRham cohomology and K-theory. In the next supersymmetric dimension, twisted field theories are conjecturally related to a generalized elliptic cohomology theory, topological modular forms (TMF). The conjectured relationship has been investigated for over thirty years but remains unresolved. Having a description of these supersymmetric field theories as equivariant factorization algebras would reframe the conjecture, allowing more direct use of examples of field theories from physics. The second component of the project involves looking at a categorification of principal bundles, where the symmetries are given by a smooth 2-group. Principal bundles for smooth 2-groups are also related to questions in elliptic cohomology, since the string group (an example of a smooth 2-group arising as a categorical central extension) gives orientation data for TMF. This project is jointly funded by the LEAPS-MPS program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数学和物理学之间的对话具有悠久的历史,这些历史是在这两个学科中产生见解,通常会揭示出深层,统一的结构,例如一般相对论和riemannian几何形状。拓扑是形状的研究;尤其是,拓扑询问形状的特性,这些属性保持不变,因为形状被平稳地转化。在过去的一个世纪中,量子物理学的进步,尤其是凝结的物理和超弦理论,取决于拓扑创新。一种这样的创新是分解代数,这是一种数学模型,用于观察(经典或量子)场理论。该项目使用分解代数来探索某种类型的量子场理论与拓扑中的对象之间的猜想关系,称为椭圆形共同体。数十年来,这种关系的精确结构一直难以捉摸。解决这一概念的解决方案将洞悉与字符串理论相关的量子物理学中的元素同胞的几何解释和基础问题。该奖项还支持一场关于拓扑和数学物理学的区域会议,杰出的讲座系列,以及在PI机构中为大学生提供的研究机会,这既增加了代表性少数少数群体在数学方面的参与,又增强了PI机构的研究环境。更具体地说,该项目探讨了等效分解代数,超对称扭曲的田间理论和椭圆形的共同体之间的关系,目的是深入了解对后者的几何理解。该项目的第一个组成部分涉及分析使用高级操作员的工具,分析平滑等效分解代数和超对称扭曲功能场理论之间的关系。超对称扭曲的场理论已被用来弥合数学物理学和协同理论。在低维度中,使用Derham共同体学和K理论对这些现场理论进行了已知的差异几何描述。在下一个超对称维度中,扭曲的场理论与广义椭圆形的共同体学理论,拓扑模块形式(TMF)相关。猜想的关系已经进行了三十多年的调查,但仍未解决。将这些超对称场理论描述为等效分解代数将指出该猜想,从而可以更多地直接使用物理学的现场理论示例。该项目的第二个组成部分涉及查看一类主束,其中对称是由平滑的2组给出的。平滑2组的主要捆绑包也与椭圆形的问题有关,因为字符串组(作为分类中央扩展的平滑2组的一个示例)提供了TMF的方向数据。该项目由LEAPS-MPS计划和启发竞争研究的既定计划共同资助。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响评估标准,通过评估被认为是宝贵的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Laura Murray其他文献

Transfemoral Prosthetic Socket Designs: A Review of the Literature
经股假肢接受腔设计:文献综述
The prostitute, the city, and the virus
  • DOI:
    10.1016/j.ssaho.2020.100078
    10.1016/j.ssaho.2020.100078
  • 发表时间:
    2020-01-01
    2020-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Soraya Silveira Simões;Thaddeus Gregory Blanchette;Laura Murray;Ana Paula da Silva
    Soraya Silveira Simões;Thaddeus Gregory Blanchette;Laura Murray;Ana Paula da Silva
  • 通讯作者:
    Ana Paula da Silva
    Ana Paula da Silva
Sex Worker Leadership in Responding to HIV and Promoting Human Rights
性工作者在应对艾滋病毒和促进人权方面的领导作用
  • DOI:
  • 发表时间:
    2012
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Kerrigan;A. Wirtz;S. Baral;M. Decker;Laura Murray;T. Poteat;C. Pretorius;S. Sherman;M. Sweat;I. Semini;N’Della N’Jie;A. Stanciole;Jenny Butler;S. Osornprasop;R. Oelrichs;C. Beyrer
    D. Kerrigan;A. Wirtz;S. Baral;M. Decker;Laura Murray;T. Poteat;C. Pretorius;S. Sherman;M. Sweat;I. Semini;N’Della N’Jie;A. Stanciole;Jenny Butler;S. Osornprasop;R. Oelrichs;C. Beyrer
  • 通讯作者:
    C. Beyrer
    C. Beyrer
14.2 A Randomized Effectiveness Trial of Trauma-Focused Cognitive-Behavioral Therapy for Trauma Affected Children in Lusaka, Zambia
  • DOI:
    10.1016/j.jaac.2016.07.201
    10.1016/j.jaac.2016.07.201
  • 发表时间:
    2016-10-01
    2016-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Laura Murray;Jeremy Kane;Paul Bolton;Mwiya Imasiku
    Laura Murray;Jeremy Kane;Paul Bolton;Mwiya Imasiku
  • 通讯作者:
    Mwiya Imasiku
    Mwiya Imasiku
New contexts, old heuristics: How young people in India and the US trust online content in the age of generative AI
新环境,旧启发法:在生成人工智能时代,印度和美国的年轻人如何信任在线内容
  • DOI:
    10.48550/arxiv.2405.02522
    10.48550/arxiv.2405.02522
  • 发表时间:
    2024
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rachel Xu;Nhu Le;Rebekah Park;Laura Murray;Vishnupriya Das;Devika Kumar;Beth Goldberg
    Rachel Xu;Nhu Le;Rebekah Park;Laura Murray;Vishnupriya Das;Devika Kumar;Beth Goldberg
  • 通讯作者:
    Beth Goldberg
    Beth Goldberg
共 20 条
  • 1
  • 2
  • 3
  • 4
前往

Laura Murray的其他基金

Research Experiences for STEM Students
STEM 学生的研究经验
  • 批准号:
    1202636
    1202636
  • 财政年份:
    2012
  • 资助金额:
    $ 13.05万
    $ 13.05万
  • 项目类别:
    Standard Grant
    Standard Grant
COSEE - New Collaborations: A Partnership to Assemble "An Introduction to Our Dynamic Ocean" Course
COSEE - 新合作:合作编写“动态海洋简介”课程
  • 批准号:
    0827805
    0827805
  • 财政年份:
    2008
  • 资助金额:
    $ 13.05万
    $ 13.05万
  • 项目类别:
    Standard Grant
    Standard Grant
COSEE Coastal Trends
COSEE 沿海趋势
  • 批准号:
    0730884
    0730884
  • 财政年份:
    2007
  • 资助金额:
    $ 13.05万
    $ 13.05万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Collaborative Research: Establishment of Mid-Atlantic COSEE.
合作研究:建立大西洋中部 COSEE。
  • 批准号:
    0215094
    0215094
  • 财政年份:
    2002
  • 资助金额:
    $ 13.05万
    $ 13.05万
  • 项目类别:
    Continuing Grant
    Continuing Grant

相似国自然基金

Mps1磷酸化RPA2增强ATR介导的DNA损伤修复促进高级别浆液性卵巢癌PARP抑制剂耐药的机制研究
  • 批准号:
    82303896
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
融合MPS与GAN的复杂地质结构三维重建方法研究
  • 批准号:
    42372341
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
PS-MPs环境暴露干扰甲状腺—棕色脂肪对话引发糖脂代谢紊乱的作用及机制研究
  • 批准号:
    82370847
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
高效求解破损船舶运动问题的势流-MPS耦合数值方法研究
  • 批准号:
    52101371
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
HIF-1α介导SOX17抑制纺锤体装配检查点相关基因Mps1调控滋养细胞功能的机制研究
  • 批准号:
    82101760
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

LEAPS-MPS: Dynamics of Quantum Information in Strongly Interacting Many-Body Systems
LEAPS-MPS:强相互作用多体系统中的量子信息动力学
  • 批准号:
    2317030
    2317030
  • 财政年份:
    2023
  • 资助金额:
    $ 13.05万
    $ 13.05万
  • 项目类别:
    Standard Grant
    Standard Grant
LEAPS-MPS: Quantum Simulation with Classical Optics
LEAPS-MPS:经典光学的量子模拟
  • 批准号:
    2316878
    2316878
  • 财政年份:
    2023
  • 资助金额:
    $ 13.05万
    $ 13.05万
  • 项目类别:
    Standard Grant
    Standard Grant
LEAPS-MPS: Noncommutative Geometry and Topology of Quantum Metrics
LEAPS-MPS:量子度量的非交换几何和拓扑
  • 批准号:
    2316892
    2316892
  • 财政年份:
    2023
  • 资助金额:
    $ 13.05万
    $ 13.05万
  • 项目类别:
    Standard Grant
    Standard Grant
LEAPS-MPS: An Ultracold Atom Platform for Quantum Hydrodynamics Research and Undergraduate Training in Quantum Technology
LEAPS-MPS:用于量子流体动力学研究和量子技术本科生培训的超冷原子平台
  • 批准号:
    2137848
    2137848
  • 财政年份:
    2022
  • 资助金额:
    $ 13.05万
    $ 13.05万
  • 项目类别:
    Standard Grant
    Standard Grant
LEAPS-MPS: Investigating Emergent Gravity in Combinatorial Quantum Systems
LEAPS-MPS:研究组合量子系统中的涌现引力
  • 批准号:
    2138323
    2138323
  • 财政年份:
    2022
  • 资助金额:
    $ 13.05万
    $ 13.05万
  • 项目类别:
    Continuing Grant
    Continuing Grant