High-performance numerical methods for modelling of granular flows and sediment dynamics
用于颗粒流和沉积物动力学建模的高性能数值方法
基本信息
- 批准号:RGPIN-2017-06308
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Granular materials are made up of macroscopic small particles, of which sediment material is an important example. These materials are ubiquitous in nature and are the second-most manipulated material in industry (water being the first). Flow of granular materials plays a critical role in engineering, geophysical and environmental processes. It may seem confounding that in the today's world of scientific advancements, the flow of this most familiar form of matter remains largely unpredictable. This knowledge gap stems from the complex mechanical behaviour of these materials which may resemble those of solid, liquid (a non-Newtonian fluid) or even gas in different circumstances. The situation is still more complex when the granular material interacts with an ambient fluid like water. Predicting the behaviour of these so-called multiphase granular flows is critical to furthering today's limited understanding of fluvial and coastal sediment dynamics, submarine landslides, or slurry flow in tailing ponds of mining operations. With advances in computing power and numerical algorithms, it has become possible to numerically simulate granular flow systems, especially where physical models are restricted. Nevertheless, dealing with the complexities of multiphase granular flows is still beyond the capabilities of the many existing numerical methods. This is due to the complicated behaviour of granular material and the large deformations and fragmentations that exist at the interface of the ambient fluid and the granular material. Furthermore, to deal with the in-depth analysis of multi-scale problems, the cluster “peta-scale” computing is required. The development of a revolutionary generation of numerical techniques, the mesh-free Lagrangian (particle) methods, has provided us the first ever opportunity to overcome the granular flows complexities. These methods are known to be capable of handling the multiphase continuum with complex boundaries and interfaces. The proposed program, therefore, aims to (1) elaborate the theoretical foundation, describing the mechanics of multiphase granular flows, and develop novel algorithms, primarily based on the mesh-free Lagrangian methods, for numerical implementations; (2) improve the robustness and accuracy of these numerical techniques; and (3) develop massively parallel, accurate, and multi-scale algorithms, capable of PetaFLOP computation of these flow systems. The focus will be on development of models that permit accurate representation of the grain-scale motions and then harnessing the full power of modern computers to achieve scalable performance on large-scale problems. This program also aims to (4) provide new understanding of mechanisms involved in real-life multiphase granular flows, particularly for the case of sediment dynamics analysis in fluvial environments, mining tailing slurries and landslides.
颗粒材料由宏观的小颗粒组成,其中沉积物材料是一个重要的例子,这些材料在自然界中普遍存在,并且是工业中第二大受操纵的材料(水是第一)。颗粒材料的流动起着至关重要的作用。在工程、地球物理和环境过程中,在当今科学进步的世界中,这种最熟悉的物质形式的流动在很大程度上仍然是不可预测的,这种知识差距源于这些材料的复杂机械行为,这些材料可能类似于那些材料。当颗粒材料与水等环境流体相互作用时,固体、液体(非牛顿流体)甚至气体的情况更加复杂。进一步加深了当今对河流和沿海沉积物动力学、海底滑坡或采矿作业尾矿池中泥浆流的有限了解,随着计算能力和数值算法的进步,对颗粒流系统进行数值模拟已经成为可能。然而,处理多相颗粒流的复杂性仍然超出了许多现有数值方法的能力,这是由于颗粒材料的复杂行为以及存在于界面处的大变形和破碎。此外,为了处理多尺度问题,需要开发革命性的新一代数值技术——无网格拉格朗日。 (粒子)方法为我们提供了克服颗粒流复杂性的第一个机会。众所周知,这些方法能够处理具有复杂边界和界面的多相连续体,因此,所提出的程序旨在(1)详细阐述。理论基础,描述多相颗粒流的力学,并开发主要基于无网格拉格朗日方法的数值实现算法;(2)提高这些数值技术的鲁棒性和准确性;(3)大规模开发;并行、精确和多尺度算法,能够对这些流动系统进行 PetaFLOP 计算。重点是开发能够准确表示颗粒尺度运动的模型,然后利用现代计算机的全部功能来实现可扩展的性能。该计划还旨在 (4) 提供对现实生活中多相颗粒流机制的新认识,特别是河流环境、采矿尾矿浆和滑坡中的沉积物动力学分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shakibaeinia, Ahmad其他文献
Numerical modelling of oil-sands tailings dam breach runout and overland flow
- DOI:
10.1016/j.scitotenv.2019.134568 - 发表时间:
2020-02-10 - 期刊:
- 影响因子:9.8
- 作者:
Mahdi, Abdellah;Shakibaeinia, Ahmad;Dibike, Yonas B. - 通讯作者:
Dibike, Yonas B.
MPS mesh-free particle method for multiphase flows
- DOI:
10.1016/j.cma.2012.03.013 - 发表时间:
2012-01-01 - 期刊:
- 影响因子:7.2
- 作者:
Shakibaeinia, Ahmad;Jin, Yee-Chung - 通讯作者:
Jin, Yee-Chung
Shakibaeinia, Ahmad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shakibaeinia, Ahmad', 18)}}的其他基金
Modelling Complex Hydro-environmental Systems
复杂水文环境系统建模
- 批准号:
CRC-2017-00006 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Canada Research Chairs
High-performance numerical methods for modelling of granular flows and sediment dynamics
用于颗粒流和沉积物动力学建模的高性能数值方法
- 批准号:
RGPIN-2017-06308 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Modelling Complex Hydro-Environmental Systems
复杂水环境系统建模
- 批准号:
CRC-2017-00006 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Canada Research Chairs
Modelling Complex Hydro-environmental Systems
复杂水文环境系统建模
- 批准号:
1000232059-2017 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Canada Research Chairs
High-performance numerical methods for modelling of granular flows and sediment dynamics
用于颗粒流和沉积物动力学建模的高性能数值方法
- 批准号:
RGPIN-2017-06308 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Fully-Lagrangian three-dimensional modelling of river ice jam initiation
河流冰塞引发的全拉格朗日三维建模
- 批准号:
558609-2020 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Alliance Grants
High-performance numerical methods for modelling of granular flows and sediment dynamics
用于颗粒流和沉积物动力学建模的高性能数值方法
- 批准号:
RGPIN-2017-06308 - 财政年份:2019
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Modelling Complex Hydro-environmental Systems
复杂水文环境系统建模
- 批准号:
1000232059-2017 - 财政年份:2019
- 资助金额:
$ 2.11万 - 项目类别:
Canada Research Chairs
Modelling Complex Hydro-environmental Systems
复杂水文环境系统建模
- 批准号:
1000232059-2017 - 财政年份:2018
- 资助金额:
$ 2.11万 - 项目类别:
Canada Research Chairs
High-performance numerical methods for modelling of granular flows and sediment dynamics
用于颗粒流和沉积物动力学建模的高性能数值方法
- 批准号:
RGPIN-2017-06308 - 财政年份:2018
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于MaCOM 1.0海洋数值模式的解析四维集合变分数据同化方法研究
- 批准号:42376190
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于衰减和频散逼近的TI粘弹性波方程有限差分数值求解新方法研究
- 批准号:42304123
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
可压缩两介质流体中五方程的保物理约束高阶数值方法研究
- 批准号:12301505
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CO2地质封存岩石渗流-流变耦合长期变形机理与数值分析方法
- 批准号:52378326
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
非全局Lipschitz条件下时滞随机微分方程数值方法的研究
- 批准号:12301521
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
BCC for Prostate Cancer: Discovery and Translation of Biomarkers for Clinical Unmet Needs
前列腺癌的 BCC:发现和转化生物标志物以满足临床未满足的需求
- 批准号:
10701245 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
High-performance numerical methods for modelling of granular flows and sediment dynamics
用于颗粒流和沉积物动力学建模的高性能数值方法
- 批准号:
RGPIN-2017-06308 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Experimental and Numerical Methods for Evaluating Fire Performance of Materials
评估材料防火性能的实验和数值方法
- 批准号:
RGPIN-2015-05911 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Analyzing Streaming Multi-Sensor Data to Predict Stroke in Preterm Babies
分析流式多传感器数据以预测早产儿中风
- 批准号:
10250034 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Experimental and Numerical Methods for Evaluating Fire Performance of Materials
评估材料防火性能的实验和数值方法
- 批准号:
RGPIN-2015-05911 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual