High-performance numerical methods for modelling of granular flows and sediment dynamics

用于颗粒流和沉积物动力学建模的高性能数值方法

基本信息

  • 批准号:
    RGPIN-2017-06308
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Granular materials are made up of macroscopic small particles, of which sediment material is an important example. These materials are ubiquitous in nature and are the second-most manipulated material in industry (water being the first). Flow of granular materials plays a critical role in engineering, geophysical and environmental processes. It may seem confounding that in the today's world of scientific advancements, the flow of this most familiar form of matter remains largely unpredictable. This knowledge gap stems from the complex mechanical behaviour of these materials which may resemble those of solid, liquid (a non-Newtonian fluid) or even gas in different circumstances. The situation is still more complex when the granular material interacts with an ambient fluid like water. Predicting the behaviour of these so-called multiphase granular flows is critical to furthering today's limited understanding of fluvial and coastal sediment dynamics, submarine landslides, or slurry flow in tailing ponds of mining operations. ***With advances in computing power and numerical algorithms, it has become possible to numerically simulate granular flow systems, especially where physical models are restricted. Nevertheless, dealing with the complexities of multiphase granular flows is still beyond the capabilities of the many existing numerical methods. This is due to the complicated behaviour of granular material and the large deformations and fragmentations that exist at the interface of the ambient fluid and the granular material. Furthermore, to deal with the in-depth analysis of multi-scale problems, the cluster “peta-scale” computing is required. The development of a revolutionary generation of numerical techniques, the mesh-free Lagrangian (particle) methods, has provided us the first ever opportunity to overcome the granular flows complexities. These methods are known to be capable of handling the multiphase continuum with complex boundaries and interfaces. ***The proposed program, therefore, aims to (1) elaborate the theoretical foundation, describing the mechanics of multiphase granular flows, and develop novel algorithms, primarily based on the mesh-free Lagrangian methods, for numerical implementations; (2) improve the robustness and accuracy of these numerical techniques; and (3) develop massively parallel, accurate, and multi-scale algorithms, capable of PetaFLOP computation of these flow systems. The focus will be on development of models that permit accurate representation of the grain-scale motions and then harnessing the full power of modern computers to achieve scalable performance on large-scale problems. This program also aims to (4) provide new understanding of mechanisms involved in real-life multiphase granular flows, particularly for the case of sediment dynamics analysis in fluvial environments, mining tailing slurries and landslides.
这些材料由宏观的斑点组成,这些材料无处不在,是工业中第二大的操纵材料(水是第一种)。科学的进步了解河流和沿海沉积物动力学,海底滑坡或泥浆流的尾巴流动,以限制计算能力和数值算法的进步。在许多存在的方法中,这是由于颗粒材料的汇编行为和周围流体和颗粒状的大变形,以处理深入的肛门尺度问题“ Ired。革命性的数值技术的发展,无网状的Lagrangian(粒子方法,已经证明了我们的第一个植物流量的复杂性。这些方法已知能够处理具有复杂边界的处理E多形连续性因此,***的接口。这些流动系统的准确性代表了谷物规模的动作,以及现代计算机的全部功能,以实现大规模问题的可扩展性能。 - 寿命多相花岗岩,部分用于河流环境中补充动力学,采矿尾巴和滑坡的情况。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shakibaeinia, Ahmad其他文献

Numerical modelling of oil-sands tailings dam breach runout and overland flow
  • DOI:
    10.1016/j.scitotenv.2019.134568
  • 发表时间:
    2020-02-10
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Mahdi, Abdellah;Shakibaeinia, Ahmad;Dibike, Yonas B.
  • 通讯作者:
    Dibike, Yonas B.
MPS mesh-free particle method for multiphase flows

Shakibaeinia, Ahmad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shakibaeinia, Ahmad', 18)}}的其他基金

Modelling Complex Hydro-environmental Systems
复杂水文环境系统建模
  • 批准号:
    CRC-2017-00006
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Canada Research Chairs
High-performance numerical methods for modelling of granular flows and sediment dynamics
用于颗粒流和沉积物动力学建模的高性能数值方法
  • 批准号:
    RGPIN-2017-06308
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
High-performance numerical methods for modelling of granular flows and sediment dynamics
用于颗粒流和沉积物动力学建模的高性能数值方法
  • 批准号:
    RGPIN-2017-06308
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Modelling Complex Hydro-Environmental Systems
复杂水环境系统建模
  • 批准号:
    CRC-2017-00006
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Canada Research Chairs
Modelling Complex Hydro-environmental Systems
复杂水文环境系统建模
  • 批准号:
    1000232059-2017
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Canada Research Chairs
Fully-Lagrangian three-dimensional modelling of river ice jam initiation
河流冰塞引发的全拉格朗日三维建模
  • 批准号:
    558609-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Alliance Grants
High-performance numerical methods for modelling of granular flows and sediment dynamics
用于颗粒流和沉积物动力学建模的高性能数值方法
  • 批准号:
    RGPIN-2017-06308
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
High-performance numerical methods for modelling of granular flows and sediment dynamics
用于颗粒流和沉积物动力学建模的高性能数值方法
  • 批准号:
    RGPIN-2017-06308
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Modelling Complex Hydro-environmental Systems
复杂水文环境系统建模
  • 批准号:
    1000232059-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Canada Research Chairs
Modelling Complex Hydro-environmental Systems
复杂水文环境系统建模
  • 批准号:
    1000232059-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Canada Research Chairs

相似国自然基金

基于MaCOM 1.0海洋数值模式的解析四维集合变分数据同化方法研究
  • 批准号:
    42376190
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于衰减和频散逼近的TI粘弹性波方程有限差分数值求解新方法研究
  • 批准号:
    42304123
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
可压缩两介质流体中五方程的保物理约束高阶数值方法研究
  • 批准号:
    12301505
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非全局Lipschitz条件下时滞随机微分方程数值方法的研究
  • 批准号:
    12301521
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CO2地质封存岩石渗流-流变耦合长期变形机理与数值分析方法
  • 批准号:
    52378326
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

BCC for Prostate Cancer: Discovery and Translation of Biomarkers for Clinical Unmet Needs
前列腺癌的 BCC:发现和转化生物标志物以满足临床未满足的需求
  • 批准号:
    10701245
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
High-performance numerical methods for modelling of granular flows and sediment dynamics
用于颗粒流和沉积物动力学建模的高性能数值方法
  • 批准号:
    RGPIN-2017-06308
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
High-performance numerical methods for modelling of granular flows and sediment dynamics
用于颗粒流和沉积物动力学建模的高性能数值方法
  • 批准号:
    RGPIN-2017-06308
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Experimental and Numerical Methods for Evaluating Fire Performance of Materials
评估材料防火性能的实验和数值方法
  • 批准号:
    RGPIN-2015-05911
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Analyzing Streaming Multi-Sensor Data to Predict Stroke in Preterm Babies
分析流式多传感器数据以预测早产儿中风
  • 批准号:
    10250034
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了