2D Materials Engineering for Electron Devices

电子器件二维材料工程

基本信息

  • 批准号:
    RGPIN-2018-04851
  • 负责人:
  • 金额:
    $ 6.7万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The discovery of the graphene field effect transistor over a decade ago precipitated a renaissance in 2D materials: 2-dimensional sheets of tightly bound atoms stacked together. The layered materials include insulators, semiconductors, semimetals and metals. The long-term goal of my research program is to understand and exploit the unique properties of 2D materials for electron devices. Over the past 5 years my research group has: developed graphene oxide acoustic devices now being commercialized by start-up ORA Graphene Audio, achieved record pH sensing precision with graphene transistors, achieved a world record for quantum Hall effect in low mobility material, and we were among the first to observe 2D charge transport in black phosphorus. Building on our expertise with graphene and black phosphorus, my research program has three main themes: new 2D materials, new 2D transistor fabrication techniques, and new 2D transistor structures. In the first theme, we will characterize the bandstructure and charge transport characteristics of SnSe, a polar analogue of black phosphorus with record thermoelectric figure of merit. We will also exfoliate ultra-thin layers of Sb, a heavier pnictogen than black phosphorus, where there is a competition between spin-orbit coupling and quantum confinement leading to a predicted semimetal to semiconductor transition as the atomic layer limit is approached. In parallel, we will develop a flip-chip method that will allow us to fabricate transistors with environmentally sensitive 2D materials such as black phosphorus in a completely inert environment, minimizing the deleterious effects of oxidation. Lastly, we will develop new transistor structures in black phosphorus. This includes quantum point contacts to understand spin polarized current flow in black phosphorus, and dual-gate transistors that apply the Stark effect for bandgap tuning during transistor operation.Highly qualified personnel (HQP) will be trained using state of the art research infrastructure including semiconductor device characterization tools. A glove box with optical microscopy, atomic force microscopy, and exfoliation tools enables the fabrication of 2D material transistors. HQP have access to shared use facilities such as the Laboratoire de Microfabrication at École Polytechnique with electron beam lithography and Raman spectroscopy tools. My group is a regular user of the National High Magnetic Field Laboratory (NHMFL) in Tallahassee for access to the world's highest static magnetic fields. We have active ongoing collaborations with researchers around the world who provide complementary expertise in areas such as molecular beam epitaxy, scanning tunelling microscopy, transmission electron microscopy, and angle resolved photoemission spectroscopy. Graduated HQP are employed as engineers at established firms, are leading start-ups of their own, or are teachers.
十多年前石墨烯场效应晶体管的发现促成了二维材料的复兴:紧密结合的原子堆叠在一起的二维片材包括绝缘体、半导体、半金属和金属,这是我研究的长期目标。项目的目的是了解和利用电子器件的二维材料的独特性能 在过去的 5 年里,我的研究小组已经: 开发了氧化石墨烯声学器件,现已由初创公司 ORA 商业化。 Graphene Audio 利用石墨烯晶体管实现了创纪录的 pH 传感精度,在低迁移率材料中创造了量子霍尔效应的世界纪录,并且凭借我们在石墨烯和黑磷方面的专业知识,我们是第一批观察黑磷中二维电荷传输的公司之一。我的研究项目有三个主题:新型 2D 材料、新型 2D 晶体管制造技术和新型 2D 晶体管结构。在第一个主题中,我们将表征 SnSe(黑色的极性类似物)的能带结构和电荷传输特性。我们还将剥离具有创纪录热电品质因数的超薄层锑,这是一种比黑磷更重的磷元素,其中自旋轨道耦合和量子限制之间存在竞争,导致预测的半金属到半导体的转变作为原子。与此同时,我们将开发一种倒装芯片方法,使我们能够在完全惰性的环境中使用环境敏感的二维材料(例如黑磷)制造晶体管,从而最大限度地减少层数限制。最后,我们将开发新的黑磷晶体管结构,其中包括了解黑磷中自旋极化电流的量子点接触,以及在晶体管工作期间应用斯塔克效应进行带隙调节的双栅极晶体管。合格人员 (HQP) 将使用最先进的研究基础设施进行培训,包括配备光学显微镜、原子力显微镜和剥离工具的手套箱,以实现二维材料的制造。 HQP 可以使用共享设施,例如带有电子束光刻和拉曼光谱工具的巴黎综合理工大学的微加工实验室。我们与世界各地的研究人员保持着积极的持续合作,他们在分子束外延、扫描隧道显微镜、透射电子等领域提供互补的专业知识。毕业的 HQP 在知名公司担任工程师,领导自己的初创企业,或者担任教师。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Szkopek, Thomas其他文献

Selective ion sensing with high resolution large area graphene field effect transistor arrays
  • DOI:
    10.1038/s41467-020-16979-y
  • 发表时间:
    2020-06-26
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Fakih, Ibrahim;Durnan, Oliver;Szkopek, Thomas
  • 通讯作者:
    Szkopek, Thomas
Sensitive Precise pH Measurement with Large-Area Graphene Field-Effect Transistors at the Quantum-Capacitance Limit
  • DOI:
    10.1103/physrevapplied.8.044022
  • 发表时间:
    2017-10-30
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Fakih, Ibrahim;Mahvash, Farzaneh;Szkopek, Thomas
  • 通讯作者:
    Szkopek, Thomas
Suspended graphene electromechanical switches for energy efficient electronics
  • DOI:
    10.1016/j.pquantelec.2020.100315
  • 发表时间:
    2021-03-15
  • 期刊:
  • 影响因子:
    11.7
  • 作者:
    Szkopek, Thomas;Martel, Eli
  • 通讯作者:
    Martel, Eli
The fine structure constant determines spontaneous emission rates from semiconductors
  • DOI:
    10.1063/1.3591171
  • 发表时间:
    2011-05-23
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Szkopek, Thomas
  • 通讯作者:
    Szkopek, Thomas
High resolution potassium sensing with large-area graphene field-effect transistors
  • DOI:
    10.1016/j.snb.2019.04.032
  • 发表时间:
    2019-07-15
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Fakih, Ibrahim;Centeno, Alba;Szkopek, Thomas
  • 通讯作者:
    Szkopek, Thomas

Szkopek, Thomas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Szkopek, Thomas', 18)}}的其他基金

2D Materials Engineering for Electron Devices
电子器件二维材料工程
  • 批准号:
    RGPIN-2018-04851
  • 财政年份:
    2021
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Discovery Grants Program - Individual
2D Materials Engineering for Electron Devices
电子器件二维材料工程
  • 批准号:
    RGPIN-2018-04851
  • 财政年份:
    2020
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Discovery Grants Program - Individual
Market Assessment for Next-Generation Hydrological Sensor Technology
下一代水文传感器技术的市场评估
  • 批准号:
    538560-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Idea to Innovation
2D Materials Engineering for Electron Devices
电子器件二维材料工程
  • 批准号:
    RGPIN-2018-04851
  • 财政年份:
    2019
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Discovery Grants Program - Individual
2D Materials Engineering for Electron Devices
电子器件二维材料工程
  • 批准号:
    RGPIN-2018-04851
  • 财政年份:
    2018
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Discovery Grants Program - Individual
Ultra high quality transition metal dichalcogenide synthesis by molecular beam epitaxy for integrated light emitting diodes and ion sensitive transistors
通过分子束外延合成超高质量过渡金属二硫属化物,用于集成发光二极管和离子敏感晶体管
  • 批准号:
    494154-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Strategic Projects - Group
Nanoscale Electronics
纳米电子学
  • 批准号:
    1000228944-2012
  • 财政年份:
    2018
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Canada Research Chairs
Advanced manufacturing of InN/Si nanowire tunnelling transistors for energy efficient electronics
用于节能电子产品的 InN/Si 纳米线隧道晶体管的先进制造
  • 批准号:
    494152-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Strategic Projects - Group
2-Dimensional Materials and Atomic Scale Engineering for Nanoelectronics
纳米电子学的二维材料和原子级工程
  • 批准号:
    342439-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Discovery Grants Program - Individual
Ultra high quality transition metal dichalcogenide synthesis by molecular beam epitaxy for integrated light emitting diodes and ion sensitive transistors
通过分子束外延合成超高质量过渡金属二硫属化物,用于集成发光二极管和离子敏感晶体管
  • 批准号:
    494154-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Strategic Projects - Group

相似国自然基金

铁基二维磁性材料的相工程及其磁性能调控研究
  • 批准号:
    52301300
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于应力生长的褶皱型二维材料大面积制备与特性研究
  • 批准号:
    52102179
  • 批准年份:
    2021
  • 资助金额:
    10.0 万元
  • 项目类别:
    青年科学基金项目
基于二维螺旋材料的自供电全无机钙钛矿宽谱响应光电探测器的界面工程研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
晶面工程调控氧化物纳米晶/二维MoS2异质结复合材料表界面特性及其室温气敏性能研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    40 万元
  • 项目类别:
    地区科学基金项目
基于材料基因工程的二维MOFs催化材料研究:描述因子挖掘及OER性能预测
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目

相似海外基金

NRT-QISE: Bridging the Gap Between 2D Quantum Materials and Engineering in STEM Education
NRT-QISE:弥合 STEM 教育中 2D 量子材料与工程之间的差距
  • 批准号:
    2244274
  • 财政年份:
    2023
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Continuing Grant
Bandgap engineering for 2D materials for device applications
设备应用二维材料的带隙工程
  • 批准号:
    RGPIN-2022-03273
  • 财政年份:
    2022
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Discovery Grants Program - Individual
Alkali doping of graphene and van der Waals heterostructures for 2D materials device engineering
用于二维材料器件工程的石墨烯和范德华异质结构的碱掺杂
  • 批准号:
    571923-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Alliance Grants
Mechanical reliability and strain engineering of semiconducting 2D materials
半导体二维材料的机械可靠性和应变工程
  • 批准号:
    577601-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Alliance Grants
Materials and Interface Engineering for Highly Efficient and Stable 2D/3D Tin Pseudohalide Perovskite Solar Cells
高效稳定的 2D/3D 锡赝卤化物钙钛矿太阳能电池的材料和界面工程
  • 批准号:
    2054942
  • 财政年份:
    2021
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了