All-solid-state silicon anodes for next-generation Li-ion batteries

用于下一代锂离子电池的全固态硅阳极

基本信息

  • 批准号:
    561228-2020
  • 负责人:
  • 金额:
    $ 4万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alliance Grants
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The power generation and transportation sectors contribute to one third of Canada's GHG emissions. Alternative technologies such as wind energy and electric vehicles are emerging as promising solutions but require improvements to cost, performance and sustainability of key a component - rechargeable energy storage. Due to its high capacity and energy density, silicon anodes and solid-state electrolytes are promising candidates for the next-generation upgrade of the Li-ion battery. However, silicon anode performance is adversely affected by several previously insurmountable degradation mechanisms. Among these is the severe volume expansion which occurs during lithiation and leads to pulverization and loss of electrical contact within the electrode. Furthermore, when in contact with silicon, the electrolyte degrades and forms a solid electrolyte interface which slowly decomposes the electrolyte and causes the build up of electrically insulating layers between particles. To address these challenges, the University of Waterloo, in collaboration with ZEN Graphene Solutions Ltd (ZEN), proposes to develop an all-solid-state battery (SSB). The anode is composed of silicon encapsulated within ZEN's electrolyte-blocking graphene that provides void space for volume buffering. The proposed solid electrolyte will be a solid polymer electrolyte engineered with a mixed polymer matrix capable of good adhesion to the graphene and achieving high conductivity. These modifications have the potential to lead to a silicon anode with little to no degradation. When coupled to state-of-the-art Li-ion cathodes, the team expects to achieve > 320Wh/kg of total battery weight which is over a 50% improvement compared to current technology. These improvements are expected to increase the drive range and reduce the costs of electric vehicles. The improved air quality and expected reductions in GHG emissions will significantly improve the quality of life of Canadians and those disproportionately affected by climate change. The proposed built-in-Canada solution, if successful, is expected to lead to significant job growth and manufacturing capacity to create a supply chain for the growing battery market.
发电和运输部门贡献了加拿大温室气体排放的三分之一。风能和电动汽车等替代技术正在作为有前途的解决方案出现,但需要改进成本,性能和可持续性,即组件 - 可充电能源存储。由于其高容量和能量密度,硅阳极和固态电解质是锂离子电池下一代升级的有希望的候选人。但是,硅阳极性能受到几种以前无法克服的降解机制的不利影响。其中包括严重的体积膨胀,它发生在静脉静脉内,并导致电极内电触点的粉碎和丧失。此外,当与硅接触时,电解质降解并形成固体电解质界面,该界面会缓慢分解电解质并导致颗粒之间电绝缘层的堆积。为了应对这些挑战,滑铁卢大学与Zen Chaphene Solutions Ltd(ZEN)合作,提议开发全纤维状态电池(SSB)。阳极由封装在Zen的电解质阻滞石墨烯中的硅组成,该石墨烯为体积缓冲提供了空间。提出的固体电解质将是一种固体聚合物电解质,该电解质具有混合聚合物基质,能够对石墨烯具有良好的粘附并达到高电导率。这些修饰有可能导致几乎没有降解的硅阳极。当耦合到最先进的锂离子阴极时,该团队预计将达到> 320Wh/kg的总电池重量,与当前技术相比,这一电池重量超过50%。这些改进有望增加驱动范围并降低电动汽车的成本。温室气体排放量的改善和预期减少将显着改善加拿大人的生活质量以及受气候变化影响不成比例的人。拟议的内置解决方案(如果成功)预计将导致大量的就业增长和制造能力,为不断增长的电池市场创建供应链。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pope, MichaelA其他文献

Pope, MichaelA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pope, MichaelA', 18)}}的其他基金

Enabling Extreme Fast-Charging of Lithium-ion Batteries with Covalently-Joined Electrode Architectures - Phase I
利用共价连接电极架构实现锂离子电池的极快充电 - 第一阶段
  • 批准号:
    577513-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 4万
  • 项目类别:
    Idea to Innovation
Development of robust cathodes for pressurized, gravity-driven zinc-air batteries - Part II
开发用于加压重力驱动锌空气电池的坚固阴极 - 第二部分
  • 批准号:
    577077-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 4万
  • 项目类别:
    Alliance Grants
Scalable 2D-Materials Architectures (2D-MATURE): Synthesis and Processing, Characterization and Functionality, Implementation and Demonstrations (Inter. Collabor. - DFG-IRTG)
可扩展的 2D 材料架构 (2D-MATURE):合成和处理、表征和功能、实施和演示(Inter. Collabor. - DFG-IRTG)
  • 批准号:
    565360-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 4万
  • 项目类别:
    Collaborative Research and Training Experience

相似国自然基金

基于硅电极的微细电解加工状态检测与控制研究
  • 批准号:
    52375449
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
矿物铝硅原子排布状态和维度对电解质储能隔膜电化学性能调制机理
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
三元/硅碳锂电池热-电特性交互关系及液冷板/高导热界面材料耦合热管理模型中的传热规律研究
  • 批准号:
    51906047
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
高纯冶金级硅中氢状态对缺陷、杂质钝化的行为及控制机理研究
  • 批准号:
    51602085
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
高硅含量高温钛合金粉末热锻制备及硅化物析出状态对力学行为的影响
  • 批准号:
    51504072
  • 批准年份:
    2015
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The HIgh Silicon content anOdes for a solid state batteRY Project [The HISTORY Project]
固态电池项目的高硅含量阳极[历史项目]
  • 批准号:
    10040711
  • 财政年份:
    2023
  • 资助金额:
    $ 4万
  • 项目类别:
    Collaborative R&D
Engineering of Stretchable Neural Interfaces Using Liquid Metals for Stable Electrical Communication and Adaptive Stiffness Transformation
使用液态金属实现稳定电通信和自适应刚度变换的可拉伸神经接口工程
  • 批准号:
    10666925
  • 财政年份:
    2023
  • 资助金额:
    $ 4万
  • 项目类别:
Advanced Parallel Readers for DNA Sequencing Through a 2D Nanopore
用于通过 2D 纳米孔进行 DNA 测序的高级并行读取器
  • 批准号:
    10437327
  • 财政年份:
    2022
  • 资助金额:
    $ 4万
  • 项目类别:
Circulatronics: A New Paradigm for Biomedical Implants
循环电子学:生物医学植入物的新范式
  • 批准号:
    10472942
  • 财政年份:
    2022
  • 资助金额:
    $ 4万
  • 项目类别:
Multilayer Device for Sequencing DNA Through a Solid-State Nanopore
通过固态纳米孔对 DNA 进行测序的多层装置
  • 批准号:
    10483455
  • 财政年份:
    2022
  • 资助金额:
    $ 4万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了