Engineering of Stretchable Neural Interfaces Using Liquid Metals for Stable Electrical Communication and Adaptive Stiffness Transformation
使用液态金属实现稳定电通信和自适应刚度变换的可拉伸神经接口工程
基本信息
- 批准号:10666925
- 负责人:
- 金额:$ 19.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlloysBehaviorBiologicalBiological SciencesBiologyBiomedical EngineeringBody TemperatureBrainBrain DiseasesBrain imagingCerebrospinal FluidChronicClinicalCollaborationsCommunicationConflict (Psychology)DataDevelopmentDevicesDiseaseElastomersElectronicsEngineeringEnvironmentFaceFailureForeign BodiesGalliumGeometryGoalsHydrogelsImaging TechniquesImmune responseImplantIn VitroInflammatoryInflammatory ResponseInnovative TherapyIntelligenceInterdisciplinary StudyKnowledgeLiquid substanceLongitudinal StudiesMechanicsMedicalMelting Point TemperaturesMetalsMethodologyMissionMonitorMotionMusNanotechnologyNatureNervous SystemNeuronsNeurosciencesNeurosciences ResearchOrganismPenetrationPerformancePhysicsPhysiologicalPolymersPositioning AttributePropertyPublic HealthRegenerative MedicineResearchResearch DesignResolutionRoleSignal TransductionSiliconSystemTechniquesTechnologyTimeTissuesUnited States National Institutes of HealthWorkbioelectronicsbiomaterial compatibilitybrain circuitrybrain computer interfacebrain tissuedensitydesigndisabilityelastomericelectric impedanceexperienceflexibilityhard metalimplantationin silicoin vitro Modelin vivoin vivo Modelinnovationinsightinstrumentationinterfacialkinematicsmanufacturemeltingmulti-electrode arraysnanofabricationnervous system disorderneuralneural implantneuronal circuitrynext generationoperationphase changeresponsesolid statespatiotemporalsuccesstechnology platform
项目摘要
PROJECT SUMMARY
After decades of using implantable neural probes with implantable multielectrode arrays for medical studies,
the exact failure mechanisms of these implants still remain to be fully understood. However, more and more
studies have shown that minimizing the mismatches between the soft biological tissue and bioelectronic
devices would be a key to achieving long-term, accurate, real-time, and large-scale neural recordings and
stimulations without inflammatory immune responses. To mitigate the mechanical mismatch found in hard
metal or silicon probes, soft neural probes that are both flexible and stretchable have been developed in
recent years. However, bioelectronics on current soft probes has fundamental limits in the stability of their
electrochemical impedance under physiological conditions, resulting in a compromise between electronic
performance and mechanical matching. The long-term goal is to create a next-generation brain-computer
interface (BCI) for advancement in biology, neuroscience, biomedical engineering, and regenerative
medicine. The overall objective of this application is to elucidate the design rules to enable electronic-tissue
interfaces with reliable electrochemical impedance, tunable mechanical stiffness, using an approach that
combines two unique material types – nontoxic liquid metals and biocompatible elastomers. The central
hypothesis is that a combination of low-melting-point nontoxic gallium-based liquid metals and intrinsically
stretchable polymers will synergistically enhance the electrical, and mechanical interfacial properties in the
biological environment and provide unified interfaces for multifunctional integrated systems with embodied
intelligence. The successful completion of this research will result in significant advances in the methodology
of liquid-metal-embedded soft neural probes. The rationale underlying the proposed research is that the
successful development of a truly stretchable and reliable probe-tissue interface offers neuroscientists an
unprecedented platform technology to design specific neural probes to investigate fundamental life science
questions that were unexplorable before, such as “how neuronal circuits are formed during brain
development” where high-density high-resolution stretchable neural probes are needed as a mammalian
brain may grow more than 100% in size and add vast amounts of new tissue and resulting new functions.
The proposed research is innovative, because it departs from both the conventional and existing
neuroscientific instrumentations and introduces a new framework for next-generation neural probe systems
using low-melting-point metals and soft polymers. The proposed research is transformative because it will
enable “invisible” brain-computer interfaces (BCI) to provide fundamental insights into the underlying
physics of brain circuitry formation and functionality. Ultimately, such knowledge paves the way for us to
understand the brain and ourselves better, offers new opportunities for finding the origin of intelligence, and
invites new solutions for the development of innovative therapies to treat brain disorders.
项目概要
经过数十年使用带有植入式多电极阵列的植入式神经探针进行医学研究,
然而,这些植入物的确切失效机制仍有待充分了解。
研究表明,最大限度地减少软生物组织和生物电子之间的不匹配
设备将是实现长期、准确、实时和大规模神经记录的关键
没有炎症免疫反应的刺激,以减轻硬体中发现的机械失配。
金属或硅探针,柔性和可拉伸的软神经探针已在
然而,近年来,当前软探针的生物电子学在其稳定性方面存在根本限制。
生理条件下的电化学阻抗,导致电子之间的折衷
性能和机械匹配的长期目标是创建下一代脑机。
促进生物学、神经科学、生物医学工程和再生领域进步的接口(BCI)
该应用程序的总体目标是阐明实现电子组织的设计规则。
具有可靠电化学阻抗、可调机械刚度的接口,使用的方法
结合了两种独特的材料类型——无毒液态金属和生物相容性弹性体。
假设是低熔点无毒镓基液态金属和本质上的组合
可拉伸聚合物将协同增强电气和机械界面性能
生物环境,为多功能集成系统提供统一的接口
这项研究的成功完成将导致方法论的重大进步。
液态金属嵌入式软神经探针的研究的基本原理是
真正可拉伸且可靠的探针-组织界面的成功开发为神经科学家提供了
前所未有的平台技术来设计特定的神经探针来研究基础生命科学
以前无法探索的问题,例如“大脑中的神经回路是如何形成的”
作为哺乳动物,需要高密度高分辨率可拉伸神经探针的“发育”
大脑的大小可能会增长超过 100%,并增加大量新组织和由此产生的新功能。
所提出的研究具有创新性,因为它不同于传统的和现有的研究
神经科学仪器并引入了下一代神经探针系统的新框架
使用低熔点金属和软聚合物这项研究具有变革性,因为它将
使“隐形”脑机接口(BCI)能够提供对底层的基本见解
最终,这些知识为我们铺平了道路。
更好地了解大脑和我们自己,为寻找智力的起源提供新的机会,并且
邀请新的解决方案来开发治疗脑部疾病的创新疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tingyi Liu其他文献
Tingyi Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
长时连续复杂变形条件下镁合金动态再结晶行为与调控机理
- 批准号:52304391
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高强铝合金搅拌摩擦焊接头全周期疲劳行为及寿命预测
- 批准号:52375376
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
增材制造复杂热历史对高温合金γ′相演化行为的作用机理
- 批准号:52301171
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
不同偏离角度镍基单晶高温合金疲劳失效行为研究
- 批准号:12372178
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
L12相强化双多组元钴基合金的高温蠕变行为及机理研究
- 批准号:52301139
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
相似海外基金
Deciphering the relationship between bioresorbable magnesium alloy corrosion and the inflammatory microenvironment of the neotinima
解读生物可吸收镁合金腐蚀与新生细胞炎症微环境之间的关系
- 批准号:
10580115 - 财政年份:2023
- 资助金额:
$ 19.19万 - 项目类别:
Novel Bioresorbable Vascular Scaffolds with Uniform Biodegradation
具有均匀生物降解性的新型生物可吸收血管支架
- 批准号:
10930188 - 财政年份:2023
- 资助金额:
$ 19.19万 - 项目类别:
Environmental Exposures & Sleep in the Nurses' Health Study 3
环境暴露
- 批准号:
10677271 - 财政年份:2023
- 资助金额:
$ 19.19万 - 项目类别:
A dual-layer flat panel x-ray detector based on an engineered amorphous chalcogenide alloy for quantifying coronary artery calcium
基于工程非晶硫属化物合金的双层平板 X 射线探测器,用于量化冠状动脉钙
- 批准号:
10839539 - 财政年份:2022
- 资助金额:
$ 19.19万 - 项目类别:
Micro-invasive biochemical sampling of brain interstitial fluid for investigating neural pathology
脑间质液微创生化取样用于研究神经病理学
- 批准号:
10517496 - 财政年份:2020
- 资助金额:
$ 19.19万 - 项目类别: