Multilayer Device for Sequencing DNA Through a Solid-State Nanopore
通过固态纳米孔对 DNA 进行测序的多层装置
基本信息
- 批准号:10483455
- 负责人:
- 金额:$ 14.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-23 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressArchitectureArticular Range of MotionBiologicalBuffersCaliberComplexCustomDNADNA Microarray ChipDNA SequenceDNA sequencingData AnalysesDetectionDevicesDiagnosisDiscriminationElectric CapacitanceElectrodesElectrolytesElementsEntropyEnzymesFaceFinite Element AnalysisFreedomGeometryGlassGoalsGrantGrowthHeightImageIonsLengthLettersMachine LearningMeasurementMeasuresMechanicsMembraneMethodsModelingMolecularMotionNoiseNucleotidesOpticsPhasePhotonsPolymerasePore ProteinsPricePublic HealthPythonsResearchResistanceRunningShipsSignal TransductionSingle-Stranded DNASmall Business Innovation Research GrantSpeedStochastic ProcessesStretchingSystemTechniquesTechnologyTemperatureThickThinnessTimeUnited States National Institutes of Healthbasecostdesigndetection platformdisorder preventionexperiencefeedingfluorophoreimprovednanoporenew technologyoperationpragmatic implementationsensorsequencing platformsilicon nitridesingle moleculesolid statetemporal measurementtranscriptome sequencingvoltagewhole genome
项目摘要
Project Summary
To improve DNA sequencing capabilities with respect to accuracy, robustness and speed and to
develop practical methods of RNA sequencing, this NIH R43 Phase I project focuses on using
multilayer-design solid-state pore sensors on low-noise glass chips, towards DNA sequencing
and direct RNA sequencing. The basic concept behind nanopores involves using an applied
voltage to drive single-stranded DNA molecules through a narrow nanopore, which separates
chambers of electrolyte solution. This voltage also drives a flow of electrolyte ions through the
pore, measured as an electric current. When molecules pass through the nanopore they modify
the flow of ions, and structural information can be extracted by analysis of the duration and
magnitude of the resulting current reductions. Nanopore in atomically-thin 2D membranes
improve the signal-to-noise ratio for molecular detection and analysis because the resistance to
the ionic flow through a pore increases linearly with the pore thickness, so both the magnitudes
of the ionic current and the blocked current with a translocating molecule increase with decreasing
nanopore height. Specifically, we seek to make solid-state ionic-current based nanopore
sequencing possible by combining several components to make a modular multilayer on-chip
solid-state ultrathin-pore system that limits the range of motion for DNA in the sensing region of
a pore. We do so by creating devices containing a second layer of silicon nitride holes, parallel to
primary layer containing the sensing 2D pore that orient DNA within a device to a restricted
geometry, yet allow the free motion of ions to maintain a high signal-to-noise ratio. We propose a
specific multilayer concept with two independent electrical connections, and corresponding chip
device architecture to achieve this goal. In this method, there is a central, highly sensitive 2D
pore. A secondary layer is a nanopore array (NPA) sharing the same electrode pair as the
sensing 2D pore. These pores are constructed parallel to the “sensing” pore and serve as
“feeding” elements to stretch and feed DNA into the sensing pore. We outline the practical
implementation of this concept with Si-based technology, including advantages for DNA (and
biomolecule) sequencing (analysis) in solution. Our approach eliminates the need for any
enzymes and enables DNA molecules to be guided through robust and long-lasting nanopores,
facilitated by the custom-designed “array chip”, and at potentially record high sequencing speeds.
Illustration 1: Proposed multilayer device
concept for this NIH R43 Phase I proposal,
relying on minimization of DNA entropic
motion: a guiding array and an optimized 2D
pore.
1
项目概要
提高 DNA 测序能力的准确性、稳健性和速度,并
开发实用的 RNA 测序方法,该 NIH R43 第一阶段项目重点关注使用
低噪声玻璃芯片上的多层设计固态孔隙传感器,用于 DNA 测序
纳米孔背后的基本概念涉及使用应用程序。
电压驱动单链 DNA 分子通过狭窄的纳米孔,该纳米孔将
该电压还驱动电解质离子流过电解质溶液的室。
孔,以电流测量当分子穿过纳米孔时,它们会发生改变。
离子流和结构信息可以通过分析持续时间和
原子级薄的二维膜中产生的电流减少的幅度。
提高分子检测和分析的信噪比,因为抗
通过孔隙的离子流随孔隙厚度线性增加,因此两个量级
离子电流和易位分子阻挡电流随着减小而增加
具体来说,我们寻求制造基于固态离子电流的纳米孔。
通过组合多个组件来实现片上模块化多层的排序
固态超薄孔系统,限制DNA在传感区域的运动范围
我们通过创建包含第二层氮化硅孔的器件来实现这一点,该孔与孔平行。
包含传感 2D 孔的主层,可将设备内的 DNA 定向到受限的位置
几何结构,但允许离子自由运动以保持高信噪比。
具有两个独立电气连接的特定多层概念以及相应的芯片
在该方法中,有一个中央、高度敏感的 2D 设备架构。
第二层是与第一层共享相同电极对的纳米孔阵列(NPA)。
传感二维孔 这些孔平行于“传感”孔构建并用作
我们概述了将 DNA 拉伸并送入传感孔的“馈送”元件。
利用基于硅的技术实现这一概念,包括 DNA 的优势(以及
我们的方法无需任何溶液中的生物分子)测序(分析)。
酶并使 DNA 分子能够被引导通过坚固且持久的纳米孔,
由定制设计的“阵列芯片”促进,并有可能创纪录的高测序速度。
图 1:建议的多层器件
NIH R43 第一阶段提案的概念,
依赖于 DNA 熵的最小化
运动:引导阵列和优化的 2D
毛孔。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David John Niedzwiecki其他文献
David John Niedzwiecki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David John Niedzwiecki', 18)}}的其他基金
METHYL-SENTRY: Proposed feasibility study of a nanopore diagnostic tool with rapid automated measurement of cell free DNA methylation state for clinical cancer evaluation
METHYL-SENTRY:拟议的纳米孔诊断工具的可行性研究,可快速自动测量无细胞 DNA 甲基化状态,用于临床癌症评估
- 批准号:
10708833 - 财政年份:2022
- 资助金额:
$ 14.14万 - 项目类别:
Nanochannel-nanopore based DNA sequencing with DNA motion control and reduced entropic noise
基于纳米通道-纳米孔的 DNA 测序,具有 DNA 运动控制和降低的熵噪声
- 批准号:
10010924 - 财政年份:2020
- 资助金额:
$ 14.14万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 14.14万 - 项目类别:
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
- 批准号:
10679749 - 财政年份:2023
- 资助金额:
$ 14.14万 - 项目类别:
p16INK4a+ fibroblasts regulate epithelial regeneration after injury in lung alveoli through the SASP
p16INK4a成纤维细胞通过SASP调节肺泡损伤后的上皮再生
- 批准号:
10643269 - 财政年份:2023
- 资助金额:
$ 14.14万 - 项目类别:
Genome Instability Induced Anti-Tumor Immune Responses
基因组不稳定性诱导的抗肿瘤免疫反应
- 批准号:
10626281 - 财政年份:2023
- 资助金额:
$ 14.14万 - 项目类别: