Development of novel approaches to improve water resources data records, deep learning based forecasting, and participatory socio-hydrological systems modeling for integrated and adaptive water resources management
开发新方法来改进水资源数据记录、基于深度学习的预测以及用于综合和适应性水资源管理的参与式社会水文系统建模
基本信息
- 批准号:RGPIN-2020-05325
- 负责人:
- 金额:$ 2.62万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The long-term goal of my research program is to continue developing very original and practical methods to reduce the vulnerability, as well as enhance the resilience, adaptive capacity, and sustainability of water resources (WR) in Canada and elsewhere in the face of increasing complexity and climate change. In many parts of Canada and the world, pressure on WR, both in terms of quality and quantity, from urban areas, agriculture, industry and climate change are increasing, resulting in significant challenges for sustainable WR management. The capacity of communities in Canada and elsewhere to mitigate against, and adapt to, such complex problems is constrained by numerous factors, including: i) a lack of, or unsuitable, WR data records in many watersheds that can help support WR modeling, planning and management; ii) challenges in providing very accurate short-term forecasts of WR variables and providing useful uncertainty estimates for decision makers; and iii) our limited understanding and modeling ability of the complex interactions and feedbacks between socioeconomic and physical processes in WR systems, combined with a frequent lack of meaningful participation of stakeholders in WR modeling, planning and management. To address these complex challenges, my 5 year NSERC DG research program objectives consist of an interlinked three pronged/themed approach (that is a direct continuation of my current DG research) to develop, test, and implement very original and practical methods to improve: i) Water resources data records (Theme 1). We will develop new statistical approaches to: fill in records at stations with scattered missing values; extend records at short gauged stations or records with large missing gaps; and estimate records at completely ungauged sites. Some of these newly developed methods, and the improved WR data records obtained from their use, will also be used in themes 2 and 3 of my research program. ii) Short-term water resources variable forecasting (Theme 2). We will develop new `Deep Learning' based machine learning approaches that address nonlinearity, and new approaches to address non-stationarity and uncertainty estimation, in short-term (e.g., 1-3 days ahead) WR variable forecasting. iii) Participatory coupled socio-hydrological systems modeling (Theme 3). We will develop new approaches to address the complex challenges of calibration, validation and `user friendly' software for participatory coupled socio-hydrological systems models that represent and dynamically model the interactions and feedbacks between physical (e.g., hydrological and related environmental processes) and socioeconomic processes that govern WR systems. The purpose of these coupled models will be to explore, in conjunction with stakeholders, long-term scenarios/trajectories and `what if' questions over decadal time spans (in contrast to short term `operational forecasting' such as Theme 2 models).
胶合的长期目标是继续进行非常实用的方法,以减少加拿大的弹性,适应性能力和水资源的可持续性(WR),而其他人则面对日益增长的复杂性和气候变化。加拿大,质量和数量的压力,来自城市,行业和气候变化。这种复杂的问题受到许多因素的限制,i)或不合适的WR数据记录在许多分水岭中可以帮助支持WR建模,计划和管理II)在提供WR变量非常短的预测方面的挑战,并为有用的不确定性估算提供了有用的不确定性估算决策者nd iii)我们对TEMS中的社会经济和过程之间的复杂互动和反馈的有限和模型,结合了WR模型中利益相关者的经常缺乏有意义的利益,以应对复杂的挑战。 /主题方法来发展,测试和实施改进的方法:i)水资源数据记录(主题1)。估算的记录是从美国获得的OVED WR数据记录。学习'贝斯机器学习方法介绍了地球,并在短期(例如,提前1-3天)的新方法不确定性估计)WR变量预测。 3)。 S/轨迹和“如果在十年时间跨越的问题”(与短期“操作预测”(例如主题2模型)相反)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adamowski, Jan其他文献
A wavelet neural network conjunction model for groundwater level forecasting
- DOI:
10.1016/j.jhydrol.2011.06.013 - 发表时间:
2011-09-15 - 期刊:
- 影响因子:6.4
- 作者:
Adamowski, Jan;Chan, Hiu Fung - 通讯作者:
Chan, Hiu Fung
Bottom outlet dam flow: physical and numerical modelling
- DOI:
10.1680/wama.12.00048 - 发表时间:
2014-03-01 - 期刊:
- 影响因子:1.1
- 作者:
Daneshmand, Farhang;Adamowski, Jan;Liaghat, Tahereh - 通讯作者:
Liaghat, Tahereh
Modeling the Relationship between Catchment Attributes and In-stream Water Quality
- DOI:
10.1007/s11269-015-1103-y - 发表时间:
2015-11-01 - 期刊:
- 影响因子:4.3
- 作者:
Fatehi, Iman;Amiri, Bahman Jabbarian;Adamowski, Jan - 通讯作者:
Adamowski, Jan
A novel multi criteria decision making model for optimizing time-cost-quality trade-off problems in construction projects
- DOI:
10.1016/j.eswa.2014.11.032 - 发表时间:
2015-04-15 - 期刊:
- 影响因子:8.5
- 作者:
Monghasemi, Shahryar;Nikoo, Mohammad Reza;Adamowski, Jan - 通讯作者:
Adamowski, Jan
Using extreme learning machines for short-term urban water demand forecasting
- DOI:
10.1080/1573062x.2016.1236133 - 发表时间:
2017-01-01 - 期刊:
- 影响因子:2.7
- 作者:
Mouatadid, Soukayna;Adamowski, Jan - 通讯作者:
Adamowski, Jan
Adamowski, Jan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adamowski, Jan', 18)}}的其他基金
Development of novel approaches to improve water resources data records, deep learning based forecasting, and participatory socio-hydrological systems modeling for integrated and adaptive water resources management
开发新方法来改进水资源数据记录、基于深度学习的预测以及用于综合和适应性水资源管理的参与式社会水文系统建模
- 批准号:
RGPIN-2020-05325 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Development of novel approaches to improve water resources data records, deep learning based forecasting, and participatory socio-hydrological systems modeling for integrated and adaptive water resources management
开发新方法来改进水资源数据记录、基于深度学习的预测以及用于综合和适应性水资源管理的参与式社会水文系统建模
- 批准号:
RGPIN-2020-05325 - 财政年份:2020
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Novel Approaches in Statistical Analysis and Coupled Social-Physical Systems Modeling for Integrated and Adaptive Water Resources Management in the Face of Increasing Uncertainty
面对日益增加的不确定性,用于综合和适应性水资源管理的统计分析和耦合社会物理系统建模的新方法
- 批准号:
RGPIN-2015-05554 - 财政年份:2019
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Novel Approaches in Statistical Analysis and Coupled Social-Physical Systems Modeling for Integrated and Adaptive Water Resources Management in the Face of Increasing Uncertainty
面对日益增加的不确定性,用于综合和适应性水资源管理的统计分析和耦合社会物理系统建模的新方法
- 批准号:
RGPIN-2015-05554 - 财政年份:2018
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Novel Approaches in Statistical Analysis and Coupled Social-Physical Systems Modeling for Integrated and Adaptive Water Resources Management in the Face of Increasing Uncertainty
面对日益增加的不确定性,用于综合和适应性水资源管理的统计分析和耦合社会物理系统建模的新方法
- 批准号:
477886-2015 - 财政年份:2017
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Novel Approaches in Statistical Analysis and Coupled Social-Physical Systems Modeling for Integrated and Adaptive Water Resources Management in the Face of Increasing Uncertainty
面对日益增加的不确定性,用于综合和适应性水资源管理的统计分析和耦合社会物理系统建模的新方法
- 批准号:
RGPIN-2015-05554 - 财政年份:2017
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
A new participatory rainwater management framework for urban areas using non-structural measures.
使用非结构性措施的城市地区新的参与式雨水管理框架。
- 批准号:
518069-2017 - 财政年份:2017
- 资助金额:
$ 2.62万 - 项目类别:
Engage Grants Program
Assessing the impact of climate change on Montreal's precipitation characteristics
评估气候变化对蒙特利尔降水特征的影响
- 批准号:
505755-2016 - 财政年份:2016
- 资助金额:
$ 2.62万 - 项目类别:
Engage Grants Program
Novel Approaches in Statistical Analysis and Coupled Social-Physical Systems Modeling for Integrated and Adaptive Water Resources Management in the Face of Increasing Uncertainty
面对日益增加的不确定性,用于综合和适应性水资源管理的统计分析和耦合社会物理系统建模的新方法
- 批准号:
RGPIN-2015-05554 - 财政年份:2016
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Development of State-of-the-Art Artificial Intelligence River Flood Forecasting Models
开发最先进的人工智能河流洪水预报模型
- 批准号:
477864-2015 - 财政年份:2015
- 资助金额:
$ 2.62万 - 项目类别:
Engage Grants Program
相似国自然基金
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
- 批准号:82304658
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
novel_circ_001042/miR-298-5p/Capn1轴调节线粒体能量代谢在先天性肛门直肠畸形发生中的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
- 批准号:82070530
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Novel approaches to define tissue fusion mechanisms in embryonic development.
定义胚胎发育中组织融合机制的新方法。
- 批准号:
MR/X014339/1 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Fellowship
Using new Next Generation Sequencing (NGS) approaches to analyze the fidelity of HIV reverse transcription in Endogenous Reverse Transcription reactions (ERT)
使用新的下一代测序 (NGS) 方法来分析内源性逆转录反应 (ERT) 中 HIV 逆转录的保真度
- 批准号:
10759845 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Protecting children's health by applying novel approaches to assess urban and rural drinking water
应用新方法评估城乡饮用水,保护儿童健康
- 批准号:
10724209 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
New approaches for leveraging single-cell data to identify disease-critical genes and gene sets
利用单细胞数据识别疾病关键基因和基因集的新方法
- 批准号:
10768004 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Determining the ototoxic potential of COVID-19 therapeutics using machine learning and in vivo approaches
使用机器学习和体内方法确定 COVID-19 疗法的耳毒性潜力
- 批准号:
10732745 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别: