Enabling technologies for high performance mass spectrometry applications
高性能质谱应用的支持技术
基本信息
- 批准号:RGPIN-2020-06170
- 负责人:
- 金额:$ 3.5万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mass spectrometry (MS) has become the most preferred analytical tool because of its superior sensitivity and resolution, as well as the structural information it provides. Of the currently available MS methods, liquid and gas chromatography (LC and GC) coupled with MS have been the most widely used. However, LC/GC-MS in many cases suffer from long analysis time and low sensitivity, that increase the cost of analyses and prohibit the use of MS in many situations that could have helped by the MS technology, such as food, environmental and pharmaceutical analysis, as well as its application in clinical and point of care settings. The proposed research program aims to address some major issues that are impeding the application of MS methods and make some of the currently time-consuming methods high throughput, and improve the performance other MS methods. Applications of the new methods for the study of protein structure and structure dynamics are proposed. Sample extraction and sample enrichment often determine the quality of the analytical methods and their successful implementation. We will explore the use of new solvent systems such as deep eutectic solvents with mechanochemical method for solute specific extraction and enrichment. New liquid and solid extraction methods will be developed for ambient ionization mass spectrometry (AIMS) detection to speed up the analytical process while maintaining sensitivity and specificity. We will focus on one of the AIMS technologies called direct analysis in real time mass spectrometry (DART-MS). The combination of the extraction systems with AIMS will allow us to analyze environmental and biological samples in much shorter times than the currently used LC-MS methods. Physicochemical properties of the solvents and the solids, and their interaction with the analytes will be studied, as well as the effect of these properties on the ionization and detection efficiency of AIMS. For more complex systems a separation step must be added before the analytes are introduced into the MS. We will continue to develop novel methods to use capillary electrophoresis mass spectrometry (CEMS). Of particular interest is our efforts in capillary isoelectric focusing (cIEF) MS. We have demonstrated that this method is feasible, and our next step is to explore the possibility of combining IEF with tandem mass spectrometry for the study of minute structural differences in protein isomers. CE-MS can be a powerful tool for the study of protein structural dynamics and conformation changes in solution in their native states. We will develop new method to monitor the hydrogen-deuterium exchange (HDX) to characterize the part of the protein molecules that are exposed to the solution, and the parts of that are protected by their tertiary structures, as well as their conformational changes and disulfide bonds scramble in different kind of stress conditions.
质谱 (MS) 因其卓越的灵敏度和分辨率以及提供的结构信息而成为最受欢迎的分析工具。在目前可用的 MS 方法中,液相色谱和气相色谱(LC 和 GC)与 MS 结合使用最为广泛。然而,LC/GC-MS 在许多情况下都存在分析时间长和灵敏度低的问题,这会增加分析成本,并禁止在许多可以通过 MS 技术提供帮助的情况下使用 MS,例如食品、环境和制药分析及其在临床和护理点环境中的应用。拟议的研究计划旨在解决阻碍MS方法应用的一些主要问题,使一些目前耗时的方法具有高通量,并提高其他MS方法的性能。提出了蛋白质结构和结构动力学研究新方法的应用。样品提取和样品富集通常决定分析方法的质量及其成功实施。我们将探索使用新的溶剂系统,例如低共熔溶剂,采用机械化学方法进行溶质特异性萃取和富集。将开发用于环境电离质谱 (AIMS) 检测的新液体和固体萃取方法,以加快分析过程,同时保持灵敏度和特异性。我们将重点关注 AIMS 技术之一,称为实时质谱直接分析 (DART-MS)。萃取系统与 AIMS 的结合将使我们能够比目前使用的 LC-MS 方法在更短的时间内分析环境和生物样品。将研究溶剂和固体的物理化学性质、它们与分析物的相互作用,以及这些性质对 AIMS 电离和检测效率的影响。对于更复杂的系统,必须在将分析物引入 MS 之前添加分离步骤。我们将继续开发使用毛细管电泳质谱(CEMS)的新方法。特别令人感兴趣的是我们在毛细管等电聚焦 (cIEF) MS 方面的努力。我们已经证明这种方法是可行的,下一步我们将探索等电聚焦与串联质谱相结合来研究蛋白质异构体微小结构差异的可能性。 CE-MS 可以成为研究天然状态下溶液中蛋白质结构动力学和构象变化的强大工具。我们将开发新方法来监测氢-氘交换(HDX),以表征暴露于溶液中的蛋白质分子部分、受三级结构保护的部分、以及构象变化和二硫键债券在不同类型的压力条件下都会争夺。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chen, David其他文献
Different risk factor patterns for metabolic syndrome in men with spinal cord injury compared with able-bodied men despite similar prevalence rates
- DOI:
10.1016/j.apmr.2007.05.023 - 发表时间:
2007-09-01 - 期刊:
- 影响因子:4.3
- 作者:
Liang, Huifang;Chen, David;Braunschweig, Carol L. - 通讯作者:
Braunschweig, Carol L.
Residual enhanced visual vector as a compact signature for mobile visual search
- DOI:
10.1016/j.sigpro.2012.06.005 - 发表时间:
2013-08-01 - 期刊:
- 影响因子:4.4
- 作者:
Chen, David;Tsai, Sam;Girod, Bernd - 通讯作者:
Girod, Bernd
PTEN Expression, Not Mutation Status in TSC1, TSC2, or mTOR, Correlates with the Outcome on Everolimus in Patients with Renal Cell Carcinoma Treated on the Randomized RECORD-3 Trial
- DOI:
10.1158/1078-0432.ccr-18-1833 - 发表时间:
2019-01-15 - 期刊:
- 影响因子:11.5
- 作者:
Voss, Martin H.;Chen, David;Motzer, Robert J. - 通讯作者:
Motzer, Robert J.
Learning to interpret natural language navigation instructions from observations
- DOI:
10.1609/aaai.v25i1.7974 - 发表时间:
2011-01-01 - 期刊:
- 影响因子:0
- 作者:
Chen, David;Mooney, Raymond - 通讯作者:
Mooney, Raymond
Teaching design thinking to medical students
- DOI:
10.1111/medu.13699 - 发表时间:
2018-11-01 - 期刊:
- 影响因子:6
- 作者:
Trowbridge, Matthew;Chen, David;Gregor, Alex - 通讯作者:
Gregor, Alex
Chen, David的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chen, David', 18)}}的其他基金
Enabling technologies for high performance mass spectrometry applications
高性能质谱应用的支持技术
- 批准号:
RGPIN-2020-06170 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Enabling technologies for high performance mass spectrometry applications
高性能质谱应用的支持技术
- 批准号:
RGPIN-2020-06170 - 财政年份:2020
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Testing for concerted or independent voltage sensor movement in ion channels
测试离子通道中一致或独立的电压传感器运动
- 批准号:
541140-2019 - 财政年份:2019
- 资助金额:
$ 3.5万 - 项目类别:
University Undergraduate Student Research Awards
Chemical Separation and Detection Techniques and Their Wide Ranging Applications
化学分离和检测技术及其广泛应用
- 批准号:
RGPIN-2015-06286 - 财政年份:2019
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Measurement of streaming potential for determination of capillary surface characteristics
测量流动电位以确定毛细管表面特性
- 批准号:
531138-2018 - 财政年份:2018
- 资助金额:
$ 3.5万 - 项目类别:
Engage Grants Program
Chemical Separation and Detection Techniques and Their Wide Ranging Applications
化学分离和检测技术及其广泛应用
- 批准号:
RGPIN-2015-06286 - 财政年份:2018
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Chemical Separation and Detection Techniques and Their Wide Ranging Applications
化学分离和检测技术及其广泛应用
- 批准号:
RGPIN-2015-06286 - 财政年份:2017
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Chemical Separation and Detection Techniques and Their Wide Ranging Applications
化学分离和检测技术及其广泛应用
- 批准号:
RGPIN-2015-06286 - 财政年份:2016
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Molecular imprint polymer for urine biomarker isolation
用于尿液生物标志物分离的分子印迹聚合物
- 批准号:
484791-2015 - 财政年份:2015
- 资助金额:
$ 3.5万 - 项目类别:
Engage Grants Program
Chemical Separation and Detection Techniques and Their Wide Ranging Applications
化学分离和检测技术及其广泛应用
- 批准号:
RGPIN-2015-06286 - 财政年份:2015
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
开发单细胞多组学技术研究肝癌中HBV特异性T细胞表观调控机制
- 批准号:82303360
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于空间代谢流技术探究人参-远志药对通过纠偏单胺类神经递质代谢紊乱治疗阿尔茨海默病的整合作用模式
- 批准号:82304894
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
云边端融合下隐私增强的高可用智能计算协同技术
- 批准号:62302207
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
通过自主研发的AAV8-TBG-LOX-1基因治疗技术祛除支架区域氧化型低密度脂蛋白抑制支架内新生动脉粥样硬化研究
- 批准号:82370348
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
多智能体网络运动定向通信理论与技术
- 批准号:62371052
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Enabling technologies for high performance mass spectrometry applications
高性能质谱应用的支持技术
- 批准号:
RGPIN-2020-06170 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Enabling technologies for quantitative performance assessment in simulated training of image-guided needle interventions
图像引导针干预模拟训练中定量性能评估的支持技术
- 批准号:
RGPIN-2022-03919 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Development of Enabling Technologies for Clinical Ultrahigh Field Body MRI
临床超高场体 MRI 使能技术的开发
- 批准号:
10391523 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Development of Enabling Technologies for Clinical Ultrahigh Field Body MRI
临床超高场体 MRI 使能技术的开发
- 批准号:
10533352 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Development of Enabling Technologies for Clinical Ultrahigh Field Body MRI
临床超高场体 MRI 使能技术的开发
- 批准号:
10210905 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别: