Next Generation Field-Programmable Gate-Array Computer-Aided Design Tools based on Machine Learning
基于机器学习的下一代现场可编程门阵列计算机辅助设计工具
基本信息
- 批准号:RGPIN-2019-03982
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Compile times for Field Programmable Gate Array (FPGA) Computer-Aided Design (CAD) tools can be on the order of hours or even days for the largest, most complex designs. Excessive runtimes not only adversely impact engineering productivity and costs, they act as a serious impediment to the adoption of FPGAs by software developers who are used to compilation times of seconds or minutes. Recent advances in machine learning and deep learning offer fresh paradigms to revise or completely redesign traditional FPGA CAD algorithms and tools. Accordingly, the overarching goal of this research program is to develop a smart FPGA CAD flow. This work leverages machine learning, deep learning, modern optimization algorithms, and scalable parallelization to minimize the runtimes for key CAD steps in the flow and the total number of times these steps must be performed. As Place-and-Route (P&R) is the largest consumer of CPU time, all short-term goals are aimed at reducing P&R runtimes and improving solution quality. The research will be broken down into six complementary thrusts, including: 1) development of suitable FPGA CAD benchmarks for training and testing machine-learning and deep-learning algorithms, 2) development of a modular analytic placement flow, where each stage will contain various machine-learning and deep-learning models, cost-functions, and parallel optimizations suitable for modern 2D and 2.5D FPGA devices, 3) combining the modular placement flow with a machine-learning framework to automatically construct the most appropriate placement strategy based on features of the circuit to be mapped onto the FPGA, 4) development of a smart detailed router that uses deep learning to guide the router to avoid excessive congestion thus improving runtime and solution quality, 5) development of machine-learning and deep-learning models to assist the technology (dependent) mapping stage to assess how local mapping decisions will impact subsequent solution quality, and 6) development of smart machine-learning and deep-learning models to assist in parameter selection, and the determination of circuit similarity methods so that past solutions for similar designs can be leveraged for new designs. The proposed research program will improve FPGA technology by making FPGAs easier to use by reducing compilation times and improving solution quality, and will bring a deeper understanding to how evolving machine learning and deep learning algorithms and methods will not only provide desired predictions or solutions to complex FPGA CAD problems, but will also enable FPGA CAD tools to learn from past design experiences to improve decision making, and hence performance, over time. The overall significance of this work will be to provide FPGA vendors and users with scalable, intelligent FPGA CAD tools that can produce high-quality solutions, while avoiding excessive runtimes.
现场可编程门阵列(FPGA)计算机辅助设计(CAD)工具的编译时间可以按小时甚至数天的顺序,最大,最复杂的设计。过度的运行时间不仅会对工程生产率和成本产生不利影响,而且还严重阻碍了通过用于汇编时间或分钟时间的软件开发人员采用FPGA的。 机器学习和深度学习的最新进展提供了新的范式,以修改或完全重新设计传统的FPGA CAD算法和工具。因此,该研究计划的总体目标是开发智能FPGA CAD流。这项工作利用机器学习,深度学习,现代优化算法和可扩展的并行化,以最大程度地减少流量中的关键CAD步骤的运行时间,并且必须执行这些步骤的总数。 由于位置和票房(P&R)是CPU时间的最大消费者,因此所有短期目标旨在降低P&R Runttimes并提高解决方案质量。这项研究将分为六个互补的推力,包括:1)开发合适的FPGA CAD基准测试用于培训和测试机器学习和深度学习算法,2)开发模块化分析放置流,每个阶段都包含各种阶段机器学习和深度学习模型,成本功能以及适合现代2D和2.5D FPGA设备的平行优化,3)将模块化放置流与机器学习框架结合起来,以自动构建最合适的位置策略将映射到FPGA上的电路中,4)开发智能详细的路由器,该路由器使用深度学习来指导路由器以避免过度交通拥堵,从而提高了运行时和解决方案质量,5)开发机器学习和深度学习模型协助技术(依赖)映射阶段评估本地映射决策将如何影响后续的解决方案质量,以及6)开发智能机器学习和深度学习模型,以帮助选择参数选择,并确定电路相似性方法,以便过去可以利用类似设计的解决方案用于新设计。 拟议的研究计划将通过减少汇编时间和提高解决方案质量来使FPGA更易于使用,从而改善FPGA技术,并将更深入地了解发展机器学习和深度学习算法和方法不仅会为复杂的复杂提供所需的预测或解决方案FPGA CAD问题,但也将使FPGA CAD工具从过去的设计经验中学习,以改善决策,从而随着时间的流逝而进行性能。这项工作的总体意义将是为FPGA供应商和用户提供可扩展的,智能的FPGA CAD工具,这些工具可以产生高质量的解决方案,同时避免过度运行。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Grewal, Gary其他文献
Measurement and Analysis of Vehicle Vibration for Delivering Packages in Small-Sized and Medium-Sized Trucks and Automobiles
- DOI:
10.1002/pts.955 - 发表时间:
2012-01-01 - 期刊:
- 影响因子:2.6
- 作者:
Chonhenchob, Vanee;Singh, Sher Paul;Grewal, Gary - 通讯作者:
Grewal, Gary
Grewal, Gary的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Grewal, Gary', 18)}}的其他基金
Next Generation Field-Programmable Gate-Array Computer-Aided Design Tools based on Machine Learning
基于机器学习的下一代现场可编程门阵列计算机辅助设计工具
- 批准号:
RGPIN-2019-03982 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Next Generation Field-Programmable Gate-Array Computer-Aided Design Tools based on Machine Learning
基于机器学习的下一代现场可编程门阵列计算机辅助设计工具
- 批准号:
RGPIN-2019-03982 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Next Generation Field-Programmable Gate-Array Computer-Aided Design Tools based on Machine Learning
基于机器学习的下一代现场可编程门阵列计算机辅助设计工具
- 批准号:
RGPIN-2019-03982 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Placement and routing for video Codec applications running on modern FPGAs
现代 FPGA 上运行的视频编解码器应用的布局和布线
- 批准号:
530734-2018 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Engage Grants Program
An Intelligent, Parallel Framework for Field-Programmable Gate-Array Placement and Routing
用于现场可编程门阵列布局和布线的智能并行框架
- 批准号:
RGPIN-2014-03818 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
An Intelligent, Parallel Framework for Field-Programmable Gate-Array Placement and Routing
用于现场可编程门阵列布局和布线的智能并行框架
- 批准号:
RGPIN-2014-03818 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
An Intelligent, Parallel Framework for Field-Programmable Gate-Array Placement and Routing
用于现场可编程门阵列布局和布线的智能并行框架
- 批准号:
RGPIN-2014-03818 - 财政年份:2016
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
An Intelligent, Parallel Framework for Field-Programmable Gate-Array Placement and Routing
用于现场可编程门阵列布局和布线的智能并行框架
- 批准号:
RGPIN-2014-03818 - 财政年份:2015
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
An Intelligent, Parallel Framework for Field-Programmable Gate-Array Placement and Routing
用于现场可编程门阵列布局和布线的智能并行框架
- 批准号:
RGPIN-2014-03818 - 财政年份:2014
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Scalable placement and routing for modern FPGAs
现代 FPGA 的可扩展布局和布线
- 批准号:
228109-2009 - 财政年份:2013
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
面向IPv6下一代互联网的网络空间基础资源测量关键技术研究
- 批准号:62302253
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新一代地下工程原位岩体强度建构方法基础研究
- 批准号:52334004
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
基于从头设计蛋白质的新一代CAR-T免疫疗法的研发
- 批准号:32370989
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
创制可转化利用木质素基酚类化合物的新一代产油红酵母
- 批准号:22308350
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于中日两国新一代地球静止轨道卫星的植被初级生产力遥感
- 批准号:42311540014
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:国际(地区)合作与交流项目
相似海外基金
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325311 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325312 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
FMSG: Eco: Field Assisted Nano Assembly System (FANAS) for Next-Generation Photonics and Quantum Computing
FMSG:Eco:用于下一代光子学和量子计算的现场辅助纳米组装系统 (FANAS)
- 批准号:
2328096 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325310 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
REU Site: The Summer Systematics Institute: training the next generation of scientists for the field, the lab, and sharing their science with the world
REU 网站:夏季系统学研究所:为该领域、实验室培训下一代科学家,并与世界分享他们的科学成果
- 批准号:
2243994 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Continuing Grant